8.2.2.2 Trapezoidal section

$$
\begin{aligned}
B & =b+2 * m * y \\
A & =\left(b+m^{*} y\right) * y \\
P & =b+2 * y^{*} \sqrt{1+m^{2}}
\end{aligned}
$$

By eliminating b from P ,

$$
\mathrm{P}=\frac{\mathrm{A}}{\mathrm{y}}+\left(2 * \sqrt{1+\mathrm{m}^{2}}-\mathrm{m}\right) * \mathrm{y}
$$

For a minimum value of $\mathrm{P}, \delta \mathrm{P}=0$,
i.e. $\quad \frac{d P}{d y}=0 \quad$ and $\quad \frac{d P}{d m}=0$

From $\quad \frac{\mathrm{dP}}{\mathrm{dy}}=0, \quad \mathrm{y}^{2}=\frac{\mathrm{A}}{\sqrt{3}}$
From $\quad \frac{d P}{d m}=0, \quad m \quad=\frac{1}{\sqrt{3}}$
It implies the side slope of the channel is 60° to horizontal.

$$
\begin{aligned}
& \text { b } \\
\text { and } \quad & =\frac{A}{y}-m y=\sqrt{3} y-\frac{y}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} y \\
P & =\frac{2 \sqrt{3}}{3} y+\frac{4}{\sqrt{3}} y=2 \sqrt{3} y
\end{aligned}
$$

i.e. $\quad P=3^{*} b$

The optimum section is given as follow:

8.2.2.3 Other sections

N-side Channel

- from the conclusion of the previous two sections
- reflection of the rectangular optimum section about the water surface will form a square of side b.
- reflection of the trapezoidal optimum section about the water surface will form a regular hexagon of side b.
- For a N-side channel, the optimum hydraulic section should be in a form of half a 2 N -side regular polygon.

$$
\phi=\left(\frac{\mathrm{N}-1}{\mathrm{~N}}\right) * 180^{\circ}
$$

Triangular Section

- $\mathrm{N}=2$, hence $\phi=90^{\circ}$

Circular Section

- From the result of N -side channel, it can be concluded that the optimum section of a circular channel is a semi-circle.
- It is the most optimum section for all the possible open-channel crosssection.

Worked examples

1. An open channel is to be designed to carry $1 \mathrm{~m}^{3} / \mathrm{s}$ at a slope of 0.0065 . The channel material has an n value of 0.011 . Find the optimum hydraulic cross-section for a semi-circular section.

Answer

The optimum circular section is a semi-circular section with diameter D which can discharge $1 \mathrm{~m}^{3} / \mathrm{s}$.

For a semi-circular section,

$$
\begin{aligned}
\mathrm{A} & =\pi^{*} \mathrm{D}^{2} / 8 \\
\mathrm{P} & =\pi^{*} \mathrm{D} / 2 \\
\mathrm{R} & =\mathrm{A} / \mathrm{P} \\
& =\mathrm{D} / 4
\end{aligned}
$$

As $\mathrm{n}=0.011, \mathrm{~S}=0.0065$ and $\mathrm{Q}=1 \mathrm{~m}^{3} / \mathrm{s}$.

$$
\mathrm{Q}=\frac{\mathrm{A}}{\mathrm{n}} * \mathrm{R}^{2 / 3} * \mathrm{~S}^{1 / 2}
$$

i.e. $1=\frac{\pi * D^{2}}{8 * 0.011} *\left(\frac{D}{4}\right)^{2 / 3} * \sqrt{0.0065}$
$\mathrm{D}^{8 / 3}=\frac{8 * 0.011}{\pi} * 4^{\frac{2}{3}} * 0.0065^{-\frac{1}{2}}$
D $=0.951 \mathrm{~m}$
The diameter of this optimum section is 951 mm .
2. Find the optimum rectangular section from the last example.

Answer

$$
\begin{aligned}
& A=2^{*} y^{2} \\
& P=4^{*} y \\
& R \quad=A / P=y / 2
\end{aligned}
$$

By Manning equation,

$$
\begin{aligned}
& \mathrm{Q}=\frac{\mathrm{A}}{\mathrm{n}} * \mathrm{R}^{2 / 3} * \mathrm{~S}^{1 / 2} \\
& 1=\frac{2 * \mathrm{y}^{2}}{0.011} *\left(\frac{\mathrm{y}}{2}\right)^{\frac{2}{3}} * \sqrt{0.0065} \\
& \mathrm{y}^{8 / 3}=\frac{1 * 0.011 * 2^{\frac{2}{3}}}{2 * \sqrt{0.0065}} \\
& \mathrm{y}=0.434 \mathrm{~m}
\end{aligned}
$$

The optimum rectangular section has dimension of width 0.868 m and depth 0.434 m .
3. Find the optimum triangular section from the last example.

Answer

$$
\begin{aligned}
& A=y^{2} \\
& P=2 \sqrt{2} * y \\
& R=A / P \quad=y / 2 \sqrt{2}
\end{aligned}
$$

By Manning equation,

$$
\begin{aligned}
& \mathrm{Q}=\frac{\mathrm{A}}{\mathrm{n}} * \mathrm{R}^{2 / 3} * \mathrm{~S}^{1 / 2} \\
& 1=\frac{\mathrm{y}^{2}}{0.011} *\left(\frac{\mathrm{y}}{2 \sqrt{2}}\right)^{\frac{2}{3}} * \sqrt{0.0065} \\
& \mathrm{y}^{8 / 3}=\frac{0.011 *(2 \sqrt{2})^{\frac{2}{3}}}{\sqrt{0.0065}} \\
& \mathrm{y}=0.614 \mathrm{~m}
\end{aligned}
$$

The optimum triangular section is a right angle triangle with depth 0.614 m .

8.3 Non-Uniform flow - Specific Energy in Open Channel \& Critical Flow

- In open channel, the solution of many problems are greatly assisted by the concept of specific energy, i.e.

$$
\begin{equation*}
E=\frac{v^{2}}{2 g}+y \tag{8.3}
\end{equation*}
$$

In terms of flow rate, Q ,

$$
\begin{equation*}
E=\frac{1}{2 g}\left(\frac{Q}{A}\right)^{2}+y \tag{8.4}
\end{equation*}
$$

- The minimum energy will be given as

$$
\begin{equation*}
\frac{\mathrm{dE}}{\mathrm{dy}}=0 \tag{8.5}
\end{equation*}
$$

8.3.1 Rectangular Channel

- Let

$$
\begin{equation*}
\mathrm{q} \quad=\frac{\mathrm{Q}}{\mathrm{~b}} \quad=\mathrm{v}^{*} \mathrm{y} \tag{8.6}
\end{equation*}
$$

q - the discharge per unit width of a rectangular channel

$$
\begin{equation*}
\therefore \quad E=\frac{q^{2}}{2 \mathrm{gy}^{2}}+\mathrm{y} \tag{8.7}
\end{equation*}
$$

- By assuming q is constant

$$
\begin{equation*}
\frac{\mathrm{dE}}{\mathrm{dy}}=1-\frac{\mathrm{q}^{2}}{\mathrm{gy}^{3}}=0 \tag{8.8}
\end{equation*}
$$

or $\quad y=y_{c}$

$$
\begin{equation*}
=\left(\frac{q^{2}}{g}\right)^{1 / 3} \tag{8.9}
\end{equation*}
$$

$y_{c} \quad$ - critical depth at which the energy is minimum.

- The corresponding energy, E is

$$
\begin{equation*}
\mathrm{E}_{\min }=\frac{3}{2} \mathrm{y}_{\mathrm{c}} \tag{8.10}
\end{equation*}
$$

- $\operatorname{From}(8.6), \quad \mathrm{v} \quad=\frac{\mathrm{q}}{\mathrm{y}}$.

Substitute into (8.8),

$$
\begin{align*}
1-\frac{\mathrm{v}_{\mathrm{c}}{ }^{2}}{\mathrm{gy}_{\mathrm{c}}} & =0 \\
\frac{\mathrm{v}_{\mathrm{c}}{ }^{2}}{\mathrm{gy}_{\mathrm{c}}} & =1 \tag{8.11}\\
\text { or } \quad \mathrm{v}_{\mathrm{c}} & =\sqrt{\mathrm{gy} \mathrm{y}_{\mathrm{c}}} \tag{8.12}
\end{align*}
$$

- Since Froude number, Fr is defined as

$$
\begin{equation*}
\mathrm{Fr}=\frac{\mathrm{v}}{\sqrt{\mathrm{gy}_{\mathrm{ave}}}} \tag{8.13}
\end{equation*}
$$

Hence, the minimum energy is occurred when

$$
\begin{equation*}
\mathrm{Fr}^{2}=1 \tag{8.14}
\end{equation*}
$$

- For a given discharge, Q , if the flow is such that E is a min., the flow is critical flow.
- critical flow - flow with $\mathrm{E}_{\text {min }}$
- critical depth, yc - the depth of the critical flow
- critical velocity $-\mathrm{v}_{\mathrm{c}}=\sqrt{\mathrm{gy}_{\mathrm{c}}}$

- If the flow with $\mathrm{E}>\mathrm{E}_{\min }$, there are two possible depths $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$.
- $\quad\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ are called alternate depths.
- $\quad \mathrm{C}$ divides the curve AB into AC and CB regions.
- AC - subcritical flow region
- CB - supercritical flow region

	Subcritical	Critical	Supercritical
Depth of flow	$\mathrm{y}>\mathrm{y}_{\mathrm{C}}$	$\mathrm{y}=\mathrm{y}_{\mathrm{C}}$	$\mathrm{y}<\mathrm{y}_{\mathrm{C}}$
Velocity of flow	$\mathrm{v}<\mathrm{v}_{\mathrm{C}}$	$\mathrm{v}=\mathrm{v}_{\mathrm{C}}$	$\mathrm{v}>\mathrm{v}_{\mathrm{C}}$
Slope	Mild	Critical	Steep
	$\mathrm{S}<\mathrm{S}_{\mathrm{C}}$	$\mathrm{S}=\mathrm{S}_{\mathrm{C}}$	$\mathrm{S}>\mathrm{S}_{\mathrm{C}}$
Froude number	$\mathrm{Fr}<1.0$	$\mathrm{Fr}=1.0$	$\mathrm{Fr}>1.0$
Other	$\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}<\frac{\mathrm{y}_{\mathrm{C}}}{2}$	$\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{y}_{\mathrm{C}}}{2}$	$\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}>\frac{\mathrm{y}_{\mathrm{C}}}{2}$

8.3.2 Non - Rectangular Channel

- If the channel width varies with y, the specific energy must be written in the form $E=\frac{Q^{2}}{2 g A^{2}}+y$
- The minimum energy also occurs where

$$
\frac{\mathrm{dE}}{\mathrm{dy}}=0 \text { at constant } \mathrm{Q}
$$

- Since A = A(y), therefore (8.15) becomes

$$
\begin{align*}
& 1-\frac{2 Q^{2} A^{-3}}{2 g} \frac{d A}{d y}=0 \\
& \text { or } \frac{d A}{d y}=\frac{g A^{3}}{Q^{2}} \tag{8.16}
\end{align*}
$$

- Since $\quad \frac{d \mathrm{~A}}{\mathrm{dy}}=\mathrm{B}$ - the channel width at the free surface,

$$
\begin{array}{rlrl}
\therefore & & B & =\frac{\mathrm{AA}^{3}}{\mathrm{Q}^{2}} \\
\text { or } & & A & =\left(\frac{\mathrm{BQ}^{2}}{\mathrm{~g}}\right)^{1 / 3} \\
\mathrm{v}_{\mathrm{c}} & =\frac{\mathrm{Q}}{\mathrm{~A}} \\
& & & =\left(\frac{\mathrm{gA}}{\mathrm{~B}}\right)^{1 / 2} \tag{8.18}
\end{array}
$$

- For a given channel shape, $\mathrm{A}(\mathrm{y}) \& \mathrm{~B}(\mathrm{y})$, and a given $\mathrm{Q},(8.17) \&(8.18)$ have to be solved by trial and error to find the A and then v_{c}.
- If a critical channel flow is also moving uniformly (at constant depth), it must correspond to a critical slope, S_{c}, with $\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{c}}$. This condition can be analysed by Manning formula.

Worked examples:

1. A triangular channel with an angel of 120° made by 2 equal slopes. For a flow rate of $3 \mathrm{~m}^{3} / \mathrm{s}$, determine the critical depth and hence the maximum depth of the flow.

Answer

For critical flow,

$$
\begin{aligned}
\mathrm{v}^{2} & =\mathrm{g}^{*} \mathrm{y}_{\text {ave }} \\
\mathrm{Q}^{2} & =\mathrm{g}^{*} \mathrm{y}_{\text {ave }} \mathrm{AA}^{2} \\
& =\frac{\mathrm{gA}^{3}}{\mathrm{~B}} \quad\left(\mathrm{y}_{\text {ave }}=\frac{\mathrm{A}}{\mathrm{~B}}\right)
\end{aligned}
$$

For critical flow,

$$
\text { B }=2 * y^{*} \cot 30^{\circ}
$$

\& $A=y^{2 *} \cot 30^{\circ}$
$\therefore \quad Q^{2}=\frac{3 g}{2} y^{5}$
Hence $y=\left(\frac{2 Q^{2}}{3 g}\right)^{1 / 5}$

$$
\begin{aligned}
& =\left(\frac{2 * 3^{2}}{3 * 9.81}\right)^{1 / 5} \mathrm{~m} \\
& =0.906 \mathrm{~m}
\end{aligned}
$$

The maximum depth is 0.906 m .
The eritical depth, $\mathrm{y}_{\mathrm{C}}=\mathrm{y}_{\text {ave }}=\frac{A}{B}=\frac{\left(B^{*} y\right) / 2}{B}=\frac{y}{2}=\frac{0906}{2}=0.453 \mathrm{~m}$.

