AL MUSTAQBAL UNIVERSITY

ENGINEERING PHYSICS
 FIRST CLASS

LECTURE NO. 4

ASST. LECTURER
Fatima Muslim

FORCE AND MOTION

NEWTON'S LAWS OF MOTION

Sir Isaac Newton gave three fundamental laws. These laws are called Newton's laws of motion.

Newton's First Law: It states that everybody continues in its state of rest or of uniform motion in a straight line until some external force is applied on it.

Newton's Second law: The rate of change of momentum of a body is directly proportional to the applied force and the change takes place in the direction of force applied.

Or
Acceleration produced in a body is directly proportional to force applied.

$$
F=m a
$$

Units of force(Newton)
$N=k g m / s^{2}$
Newton's Third law: To every action there is an equal and opposite reaction or
action and reaction are equal and opposite.
Types of forces affecting Newton's laws of motion

1. Tensile Stress $\left(\boldsymbol{F}_{T}\right)$: The external force per unit area of the body that causes the body to stretch along the direction of applied force is called Tensile stress.
2. Frictional force $\left(\boldsymbol{F}_{f}\right)$: is the force generated by two surfaces that contact and slide against each other.
3. Normal force $\left(\boldsymbol{F}_{N}\right)$: is one type of ground reaction force

The coefficient of friction $\left(\boldsymbol{u}_{\boldsymbol{k}}\right)$: is a measure of the amount of friction existing between two surfaces.

$$
\mu_{k}=\frac{\text { frictional force }}{\text { normal force }}=\frac{F_{f}}{F_{N}}
$$

Example1: Calculate the weight on the ground of an object of mass

$$
\text { (a) } 3.00 \mathrm{~kg} \text { (b) } 200 \mathrm{~g}
$$

Solution:

(a) $F_{w}=(3.00 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=29.4 \mathrm{~N}$
(b) $\frac{200}{1000}=0.2 \mathrm{~kg}$
$F_{w}=(0.200 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=1.96 \mathrm{~N}$

Example2: A box with a mass of 60 kg requires a force of 140 N to pull it onto a horizontal floor at a constant speed. Calculate the coefficient of friction between the box and the floor.

Solution:

$a_{y}=0$
$\sum F_{y}=m a_{y}$
$F_{N}-m g=(m)(0)$
$F_{N}=m g=(60)(9.81)=588.6 \mathrm{~N}$
$a_{x}=0$
$140-F_{f}=0$
$F_{f}=140 \mathrm{~N}$
$\mu_{k}=\frac{F_{f}}{F_{N}}=\frac{140}{588.6}=0.238$

Linear Momentum (p): The quantity of motion contained in the body is linear momentum. It is given by product of mass and the velocity of the body. It is a vector and its direction is the same as the direction of the velocity.

$$
\mathbf{p}=\mathbf{m v}
$$

Units of momentum: The SI unit is $\mathrm{kg} \mathrm{m} / \mathrm{s}$
Dimension formula $=\left[M^{1} L^{1} T^{-1}\right]$.
Impulse (symbolized by J or Imp): is the change in momentum of an object. If the initial momentum of an object is p1, and a subsequent momentum is p 2 , the object has received an impulse J.

$$
\begin{gathered}
J=\Delta p \\
J=p_{2}-p_{1} \\
J=m v_{2}-m v_{1}
\end{gathered}
$$

Newton's second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object:

$$
\begin{gathered}
F=\frac{p_{2}-p_{1}}{\Delta t} \\
J=F \Delta t \\
F \Delta t=m v_{2}-m v_{1}
\end{gathered}
$$

[^0]Example3: A mass of 2 kg moves at a speed of $6 \mathrm{~m} / \mathrm{s}$. determine the force is needed to stop the mass in a time $7 \times 10^{-4} \mathrm{~s}$

Solution:

$F \Delta t=m v_{2}-m v_{1}$
$F\left(7 \times 10^{-4}\right)=0-(2 \times 6)$
$F=-1.7 \times 10^{4} \mathrm{~N}$

Example4: A ball with a mass of 0.25 kg moving in the $\mathrm{x}+$ direction and at a speed of $13 \mathrm{~m} / \mathrm{s}$ is hit with a bat and its final speed is $19 \mathrm{~m} / \mathrm{s}$ in the x -direction. If the racket acts on the ball for a period of 0.0105 S , calculate the average force F exerted by the racket on the ball

Solution:

$v_{f}=-19 \mathrm{~m} / \mathrm{s} \quad v_{i}=13 \mathrm{~m} / \mathrm{s}$
$F \Delta t=m v_{f}-m v_{i}$
$F(0.0105)=(0.25)(-19)-(0.25)(13)$
$F=-0.80 \mathrm{~N}$

Angular Displacement (θ) : The angle described by a body moving in a circle is called angular displacement.

SI unit of angular displacement is radian (rad).

$$
\boldsymbol{\theta}=\frac{\boldsymbol{l}}{\boldsymbol{r}}
$$

$l=$ Arc length
$r=$ radius

Angular Velocity (ω): Angular velocity of a body moving in a circles the rate of change of angular displacement with time. It is denoted by ω (omega) If θ is the angular displacement in time t then

$$
\begin{gathered}
\omega=\frac{\theta}{t} \\
\omega_{a v}=\frac{\theta_{f}-\theta_{i}}{t}
\end{gathered}
$$

$\omega_{a v}=$ Average angular velocity
$\theta_{f}=$ Final angular displacement
$\theta_{i}=$ Initial angular displacement

SI unit of angular velocity is rad/s.

Example5: Express each of the following in terms of other angle measures
(a) 28°
(b) $\frac{1}{4} \mathrm{rev} / \mathrm{s}$
(c) $2.18 \mathrm{rad} / \mathrm{s}^{2}$

Solution:

[^0]: 4| AL MUSTAQBAL UNIVERSITY / ENGINEERING TECHNICAL COLLEGE / DEPARTMENT OF BUILDING \& CONSTRUCTION ENGINEERING TECHNOLOGIES

