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FIGURE 4.10 Rolle’s Theorem says
that a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may
have just one (a), or it may have more (b).
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We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives
over an interval, how are the functions related? We answer these and other questions in
this chapter by applying the Mean Value Theorem. First we introduce a special case,
known as Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tangent to the graph is
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.

THEOREM 3—Rolle’s Theorem

Suppose that y = f(x) is continuous over the closed interval [ a, b] and differen-
tiable at every point of its interior (a, b). If f(a) = f(b), then there is at least one
number ¢ in (a, b) at which f'(c) = 0.

Proof Being continuous, f assumes absolute maximum and minimum values on
[a, b] by Theorem 1. These can occur only

1. atinterior points where f' is zero,
2. atinterior points where f' does not exist,
3. atendpoints of the function’s domain, in this case a and b.

By hypothesis, f has a derivative at every interior point. That rules out possibility (2), leav-
ing us with interior points where f' = 0 and with the two endpoints @ and b.

If either the maximum or the minimum occurs at a point ¢ between a and b, then
f'(c¢) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then
because f(a) = f(b)itmustbe the case that fis aconstant function with f(x) = f(a) = f(b)
for every x € [a, b]. Therefore f'(x) = 0 and the point ¢ can be taken anywhere in the
interior (a, b). |

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph
may not have a horizontal tangent (Figure 4.11).
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point

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do
not hold.

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show
when there is only one real solution of an equation f(x) = 0, as we illustrate in the next
example.
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FIGURE 4.12 The only real zero of the
polynomial y = x> + 3x + 1 is the one
shown here where the curve crosses the
x-axis between —1 and 0 (Example 1).
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FIGURE 4.13 Geometrically, the Mean
Value Theorem says that somewhere
between a and b the curve has at least one
tangent line parallel to the secant line that
joins A and B.
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FIGURE 4.14 The graph of f and the
secant AB over the interval [a, b].

EXAMPLE 1 Show that the equation
XP+3x+1=0
has exactly one real solution.
Solution We define the continuous function
fx) =x3+3x + 1.

Since f(—1) = —3 and f(0) = 1, the Intermediate Value Theorem tells us that the graph
of f crosses the x-axis somewhere in the open interval (—1, 0). (See Figure 4.12.) Now, if
there were even two points x = a and x = b where f(x) was zero, Rolle’s Theorem
would guarantee the existence of a point x = ¢ in between them where f’ was zero. How-
ever, the derivative

flix)=3x>+3
is never zero (because it is always positive). Therefore, f has no more than one zero. W

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

The Mean Value Theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted
version of Rolle’s Theorem (Figure 4.13). The Mean Value Theorem guarantees that there
is a point where the tangent line is parallel to the secant line that joins A and B.

THEOREM 4 —The Mean Value Theorem
Suppose y = f(x) is continuous over a closed interval [a, b] and differentiable
on the interval’s interior (a, b). Then there is at least one point ¢ in (a, b) at which

fo - f@
=g T ()

Proof We picture the graph of f and draw a line through the points A(a, f(a)) and
B(b, f(b)). (See Figure 4.14.) The secant line is the graph of the function

f®) — fa)
a

g = flo + b — (x —a) 2)

(point-slope equation). The vertical difference between the graphs of f and g at x is
h(x) = f(x) — g(x)
f) — f(a)
=f0 = flo) - =y« a. (3)

Figure 4.15 shows the graphs of f, g, and & together.

The function 4 satisfies the hypotheses of Rolle’s Theorem on [ a, b ]. It is continuous
on [a,b] and differentiable on (a, b) because both f and g are. Also, h(a) = h(b) = 0
because the graphs of f and g both pass through A and B. Therefore h'(c) = 0 at some
point ¢ € (a, b). This is the point we want for Equation (1) in the theorem.
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FIGURE 4.15 The secant AB is the
graph of the function g(x). The function
h(x) = f(x) — g(x) gives the vertical dis-
tance between the graphs of f and g at x.
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FIGURE 4.16 The function f(x) =

V1 — x? satisfies the hypotheses (and
conclusion) of the Mean Value Theorem
on [—1, 1] even though f is not differen-
tiable at —1 and 1.
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FIGURE 4.17 As we find in Example 2,
¢ = 1 is where the tangent is parallel to
the secant line.
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To verify Equation (1), we differentiate both sides of Equation (3) with respect to x
and then set x = ¢:

W@ = f(x) — w Derivative of Eq. (3)
W = o - OID -
0= f(c)— w B = 0
fe = 10—, Reamanged
which is what we set out to prove. m

The hypotheses of the Mean Value Theorem do not require f to be differentiable at
either a or b. One-sided continuity at a and b is enough (Figure 4.16).

EXAMPLE 2 The function f(x) = x?> (Figure 4.17) is continuous for 0 = x < 2
and differentiable for 0 < x < 2. Since f(0) = 0 and f(2) = 4, the Mean Value Theo-
rem says that at some point ¢ in the interval, the derivative f'(x) = 2x must have the value
(4 — 0)/(2 — 0) = 2. In this case we can identify ¢ by solving the equation 2¢ = 2 to
get ¢ = 1. However, it is not always easy to find c¢ algebraically, even though we know it
always exists. |

A Physical Interpretation

We can think of the number (f(b) — f(a))/(b — a) as the average change in f over
[a,b] and f'(c) as an instantaneous change. Then the Mean Value Theorem says that the
instantaneous change at some interior point is equal to the average change over the entire
interval.

EXAMPLE 3 If a car accelerating from zero takes 8 s to go 176 m, its average
velocity for the 8-s interval is 176/8 = 22 m/s. The Mean Value Theorem says that at
some point during the acceleration the speedometer must read exactly 79.2 km/h
(22 m/s) (Figure 4.18). [ |

Mathematical Consequences

At the beginning of the section, we asked what kind of function has a zero derivative over
an interval. The first corollary of the Mean Value Theorem provides the answer that only
constant functions have zero derivatives.

COROLLARY 1 If f'(x) = 0 at each point x of an open interval (a, b), then
f(x) = C for all x € (a, b), where C is a constant.

Proof We want to show that f has a constant value on the interval (a, b). We do so
by showing that if x; and x, are any two points in (a, b) with x; < x,, then f(x)) = f(x,).
Now f satisfies the hypotheses of the Mean Value Theorem on [ x;, x, |: It is differentiable
at every point of [ x;, x, | and hence continuous at every point as well. Therefore,

f) — f(x) _

X2 T X

f'(©)
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FIGURE 4.18 Distance versus elapsed
time for the car in Example 3.
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FIGURE 4.19 From a geometric point
of view, Corollary 2 of the Mean Value
Theorem says that the graphs of functions
with identical derivatives on an interval
can differ only by a vertical shift. The
graphs of the functions with derivative 2x
are the parabolas y = x> + C, shown here
for several values of C.
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at some point ¢ between x; and x,. Since f' = 0 throughout (a, b), this equation implies
successively that

FOo) — f(x) _

X — X fGx) = f(x). n

0,  f(x) — fx) =0, and

At the beginning of this section, we also asked about the relationship between two
functions that have identical derivatives over an interval. The next corollary tells us that
their values on the interval have a constant difference.

COROLLARY 2 If f'(x) = g'(x) at each point x in an open interval (a, b), then
there exists a constant C such that f(x) = g(x) + C for all x € (a, b). That is,
f — g is a constant function on (a, b).

Proof At each point x € (a, b) the derivative of the difference function h = f — g is

h'(x) = f'(x) — g'(x) = 0.

Thus, h(x) = C on (a, b) by Corollary 1. That is, f(x) — g(x) = C on (a, b), so f(x) =
gl + C. |

Corollaries 1 and 2 are also true if the open interval (a, b) fails to be finite. That is,
they remain true if the interval is (a, 00), (—o0, b), or (—o0, ©0).

Corollary 2 will play an important role when we discuss antiderivatives in Section
4.7. It tells us, for instance, that since the derivative of f(x) = x* on (—o0, c0) is 2x, any
other function with derivative 2x on (—oo, co) must have the formula x> + C for some
value of C (Figure 4.19).

EXAMPLE 4 Find the function f(x) whose derivative is sin x and whose graph
passes through the point (0, 2).

Solution  Since the derivative of g(x) = —cosx is g'(x) = sinx, we see that f and g
have the same derivative. Corollary 2 then says that f(x) = —cos x + C for some constant
C. Since the graph of f passes through the point (0, 2), the value of C is determined from
the condition that f(0) = 2:

f(O) = —cos(0) + C = 2, ) C =3.

The function is f(x) = —cosx + 3. [ |

Finding Velocity and Position from Acceleration

We can use Corollary 2 to find the velocity and position functions of an object moving
along a vertical line. Assume the object or body is falling freely from rest with acceleration
9.8 m/s?. We assume the position s(¢) of the body is measured positive downward from
the rest position (so the vertical coordinate line points downward, in the direction of the
motion, with the rest position at 0).

We know that the velocity v(f) is some function whose derivative is 9.8. We also
know that the derivative of g(f) = 9.8¢ is 9.8. By Corollary 2,

v(t) =98t + C
for some constant C. Since the body falls from rest, v(0) = 0. Thus
9.8(0) + C =0, and c=0.

The velocity function must be v(#) = 9.87. What about the position function s(7)?
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We know that s(f) is some function whose derivative is 9.8¢. We also know that the
derivative of f(f) = 4.9¢% is 9.8. By Corollary 2,

s@® =492 + C

for some constant C. Since s(0) = 0,

4902 + C =0, and

Cc=0.

The position function is s(f) = 4.9¢> until the body hits the ground.
The ability to find functions from their rates of change is one of the very powerful
tools of calculus. As we will see, it lies at the heart of the mathematical developments in

Chapter 5.

Checking the Mean Value Theorem
Find the value or values of ¢ that satisfy the equation

fb) = fla
B —a ()

in the conclusion of the Mean Value Theorem for the functions and
intervals in Exercises 1-6.

L fx)=x>+2x—1, [0,1]

2. f(x) = %3, [0,1]

N L]
. f) = Vx—1, [1,3]
L fo) =X =% [-1,2]

()_{x3, —2=x=0
- B X3 0<x=2

(9 I N

S

Which of the functions in Exercises 7—12 satisfy the hypotheses of the
Mean Value Theorem on the given interval, and which do not? Give
reasons for your answers.
7. f(x) = x*3, [-1,8]
8. f(x) = x5, [0,1]
9. fx) = V(1 —x), [0,1]
sin x

10. foo =9 *
0, x=0

x2 = x, 2 =x=-1
11.f(x)={2x2_3x_3, l<x=0

, —T=x<0

2x—3, 0=x=2
12. =
@ {6x—x2—7, 2<x=3
13. The function
ﬂ>—¥‘°§x<l
T 70, x=1

is zero at x = 0 and x = 1 and differentiable on (0, 1), but its de-
rivative on (0, 1) is never zero. How can this be? Doesn’t Rolle’s
Theorem say the derivative has to be zero somewhere in (0, 1)?
Give reasons for your answer.

14. For what values of a, m, and b does the function

3, x=0
f) =< —x2 + 3x + q, 0<x<l1
mx + b, 1l=x=2

satisfy the hypotheses of the Mean Value Theorem on the interval
[0,2]?

Roots (Zeros)
15. a. Plot the zeros of each polynomial on a line together with the
zeros of its first derivative.

i) y=x*—4
i) y=x>+8x+ 15
iii) y=x—-32+4=@x+ DHx —2)7?
iv) y =% — 33x% + 216x = x(x — 9(x — 24)
b. Use Rolle’s Theorem to prove that between every two zeros
of x" + a,_x"" ' + -+ + a;x + a, there lies a zero of
"l (= Da,o X2+ - Foay
16. Suppose that f” is continuous on [ a, b] and that f has three zeros

in the interval. Show that f” has at least one zero in (a, b). Gener-
alize this result.

17. Show that if f” > 0 throughout an interval [a, b], then f’ has
at most one zero in [a, b]. What if f” < 0 throughout [a, b]
instead?

18. Show that a cubic polynomial can have at most three real zeros.

Show that the functions in Exercises 19-26 have exactly one zero in
the given interval.

19. f(x) =x*+3x+ 1, [-2,—1]

20. f(x) = x> + % + 7, (—o0,0)
X

2. g = Vi+ V1 +1—4, (0,00
2. o) = ﬁ T NVIT T -31 =11

23. r(0) = 6 + sin? (g) — 8, (—00,00)
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24. 1(6) = 20 — cos? 6 + V2, (—o0,00)
25. H0) = sec§ — $ +5, (0,7/2)

26. r(0) = tan® — cot® — 0, (0,7/2)

Finding Functions from Derivatives
27. Suppose that f(—1) = 3 and that f'(x) =0 for all x. Must
f(x) = 3 for all x? Give reasons for your answer.

28. Suppose that f(0) = 5 and that f'(x) = 2 for all x. Must f(x) =
2x + 5 for all x? Give reasons for your answer.

29. Suppose that f'(x) = 2x for all x. Find f(2) if
a. f(0)=0 b. f1) =0 c. f(=2)=3.

30. What can be said about functions whose derivatives are constant?
Give reasons for your answer.

In Exercises 31-36, find all possible functions with the given
derivative.

3l.a. y' =x b. y =x* e y=x

32.a y =2 b.y =2x—-1 ¢ y =3>+2x—1
[ 1 [— L L i

33.a.y——; b.y—l—x2 c.y—5-|-x2

34.:;|.y’=L b.y'=L c. y’=4x—L

2Vx Vax Vax
35.a. y =sin2t b.y =cos% c. y =sin2t+cosé
36.a. y =sec’0 b.y =\Vo c. ¥y = V0O — sec?0

In Exercises 37-40, find the function with the given derivative whose
graph passes through the point P.

37. () =2x — 1, P(0,0)

3. ') = © + 2 P1,1)
X

39. 7(0) = 8 — csc2 0, P(g, 0)

40. r'(r) = secttant — 1, P(0,0)

Finding Position from Velocity or Acceleration

Exercises 41-44 give the velocity v = ds/dt and initial position of an
object moving along a coordinate line. Find the object’s position at
time ¢.

4. v=98+5 50) =10 42. v=232—2, 505) =4

2

43. v = cos % s(m) =1

sin7t, s(0) =0 4. v=

Exercises 45-48 give the acceleration a = d%s/df?, initial velocity,
and initial position of an object moving on a coordinate line. Find the
object’s position at time .

45. a = 32, v(0) =20, s(0) =5
46. a = 9.8, v(0) =-3, s(0)=0
47. a = —4sin2t, v(0) =2, 50) =-3

9 3t
- =, 0) =0, 0)=-1
77_Zc:osw. v(0) s(0)

48. a

Applications

49. Temperature change It took 14 s for a mercury thermometer to
rise from —19°C to 100°C when it was taken from a freezer and
placed in boiling water. Show that somewhere along the way the
mercury was rising at the rate of 8.5°C/s.

50. A trucker handed in a ticket at a toll booth showing that in 2 hours
she had covered 230 km on a toll road with speed limit 100 km/h.
The trucker was cited for speeding. Why?

51. Classical accounts tell us that a 170-oar trireme (ancient Greek or
Roman warship) once covered 184 sea miles in 24 hours. Explain
why at some point during this feat the trireme’s speed exceeded
7.5 knots (sea or nautical miles per hour).

52. A marathoner ran the 42 km New York City Marathon in 2.2 hours.
Show that at least twice the marathoner was running at exactly
18 km/h, assuming the initial and final speeds are zero.

53. Show that at some instant during a 2-hour automobile trip the car’s
speedometer reading will equal the average speed for the trip.

54. Free fall on the moon On our moon, the acceleration of gravity
is 1.6 m/s% If arock is dropped into a crevasse, how fast will it be
going just before it hits bottom 30 s later?

Theory and Examples

55. The geometric mean of a and b The geometric mean of two
positive numbers @ and b is the number \Vab. Show that the value
of ¢ in the conclusion of the Mean Value Theorem for f(x) = 1/x
on an interval of positive numbers [a, b] is ¢ = Vab.

56. The arithmetic mean of @ and b The arithmetic mean of two
numbers a and b is the number (a + b)/2. Show that the value of
¢ in the conclusion of the Mean Value Theorem for f(x) = x> on
any interval [a,b]isc = (a + b)/2.

57. Graph the function

f(x) = sinxsin (x + 2) — sin® (x + 1).

What does the graph do? Why does the function behave this way?
Give reasons for your answers.

58. Rolle’s Theorem

a. Construct a polynomial f(x) that has zeros at x = —2,—1, 0,
1, and 2.

b. Graph f and its derivative f’ together. How is what you see
related to Rolle’s Theorem?

¢. Do g(x) = sinx and its derivative g’ illustrate the same
phenomenon as f and f'?

59. Unique solution Assume that f is continuous on [a, b] and
differentiable on (a, b). Also assume that f(a) and f(b) have op-
posite signs and that ' # 0 between a and b. Show that f(x) = 0
exactly once between a and b.

60. Parallel tangents Assume that f and g are differentiable on
[a, b] and that f(a) = g(a) and f(b) = g(b). Show that there is
at least one point between a and b where the tangents to the graphs
of f and g are parallel or the same line. Illustrate with a sketch.

61. Suppose that f'(x) =1 for 1 =x = 4. Show that f(4)—
f(1) = 3.

62. Suppose that 0 < f'(x) < 1/2 for all x-values. Show that
fED < f(D) <2+ f=D.

63. Show that |cosx — 1| = |x| for all x-values. (Hint: Consider
f(® = coston [0,x].)



65.

66.

67.

68.

. Show that for any numbers a and b, the sine inequality

|sinb — sina| = |b — al is true.

If the graphs of two differentiable functions f(x) and g(x) start at
the same point in the plane and the functions have the same rate
of change at every point, do the graphs have to be identical? Give
reasons for your answer.

If |f(w) — f(x)| = |w — x| for all values w and x and f is a dif-
ferentiable function, show that —1 = f'(x) = 1 for all x-values.
Assume that f is differentiable on a =x = b and that
f(b) < f(a). Show that f' is negative at some point between a

69.
70.

71.

4.3 Monotonic Functions and the First Derivative Test
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where min f' and max f’ refer to the minimum and maximum
values of f’ on [a, b]? Give reasons for your answers.

Use the inequalities in Exercise 68 to estimate f(0.1)if f'(x) =
1/(1 + x*cosx) for 0 = x = 0.1 and f(0) = 1.

Use the inequalities in Exercise 68 to estimate f(0.1)if f'(x) =
1/(0 — x* for 0 < x = 0.1 and f(0) = 2.

Let f be differentiable at every value of x and suppose that
f(1) = 1, that f* < Oon (—o0, 1), and that f* > 0 on (1, c0).

a. Show that f(x) = 1 for all x.

and b.

Let f be a function defined on an interval [ a, b ]. What conditions
could you place on f to guarantee that

,_ ) = f@ _

min f' = b—a

max f’,

b. Must f'(1) = 0? Explain.

72. Let f(x) = px> + gx + r be a quadratic function defined on
a closed interval [a, b]. Show that there is exactly one point ¢
in (a, b) at which f satisfies the conclusion of the Mean Value
Theorem.

m Monotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function, it is useful to know where it increases
(rises from left to right) and where it decreases (falls from left to right) over an interval.
This section gives a test to determine where it increases and where it decreases. We also
show how to test the critical points of a function to identify whether local extreme values
are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive
derivatives are increasing functions and functions with negative derivatives are decreasing
functions. A function that is increasing or decreasing on an interval is said to be monotonic
on the interval.

COROLLARY 3 Suppose that f is continuous on [a, b] and dilferentiable on
(a, b).

If f'(x) > 0 at each point x € (a, b), then f is increasing on [a, b].
If f'(x) < O at each point x € (a, b), then f is decreasing on [a, b].

Proof Let x; and x, be any two points in [ a, b] with x; < x,. The Mean Value Theo-
rem applied to f on [x, x, | says that

J) — fx) = f'O)x — xp)

for some ¢ between x; and x,. The sign of the right-hand side of this equation is the same
as the sign of f'(c) because x, — x; is positive. Therefore, f(x,) > f(x;) if f is positive
on (a, b) and f(x,) < f(x)) if f is negative on (a, b). |

Corollary 3 tells us that f(x) = Vix is increasing on the interval [0,b] for any
b > 0 because f'(x) = 1/ Vixis positive on (0, b). The derivative does not exist at x = 0,
but Corollary 3 still applies. The corollary is valid for infinite as well as finite intervals, so
f) = Vxis increasing on [ 0, 00).

To find the intervals where a function f is increasing or decreasing, we first find all of
the critical points of f. If a < b are two critical points for f, and if the derivative f' is



