(a) Design ternary (D=3) Huffman source code for the
source shown beside.

- (b) Determine the efficiency of the source and the efficiency of the source code.
- (c) Is the code decodable? Why?

2	

1-

(a) Find the efficiency of the following continues source:

f(x) = 0.5 for |x| < 1 and 0 elsewhere

- (b) Consider the transmission of binary information over channel having bandwidth of 10 kHz at rate of 40 kbps:
 - i- Find the corresponding S/N in dB.

ii- If the AWGN power spectral density N_0 is 2 μ *Watt/Hz*, what is the signal power.

- 3. Use the channel model shown beside: If $p(x_1) = p(x_2) = 0.4$ $P(y/x) = \begin{array}{ccc} y1 & y2 & y3 \\ x1 & 0.9 & 0 & 0.1 \\ x2 & 0 & 1 & 0 \\ x3 & 0.1 & 0 & 0.9 \end{array}$
 - a) Is the channel symmetric or noiseless?
 - **b**)Find $p(x_3)$ and source efficiency
 - c) Find H(y), H(y|x), and I

4- Consider the following three error control codes;

- i- First Code: Binary repetition code with $n_1=3$.
- **ii-** Second Code: Linear block code with $(n_2, k_2) = (15,11)$
- iii- Third Code: Odd parity check code with n3=3

Then answer the followings;

- 1- Find the value of k (number of input data bits) for the first and third code.
- 2- Give the dimension of the parity check matrix H for second code.
- **3-** Find the error correction capability t_c of the second code.
- 4- What is the generator matrix for first code?
- 5- Consider cyclic code with generator polynomial $g(x) = x^4 + x + 1$ with codeword length n=15.

Symbol	Probability
x_i	$\mathbf{P}(\mathbf{x}_i)$
<i>x</i> ₁	0.15
<i>x</i> ₂	0.21
<i>x</i> ₃	0.07
<i>x</i> ₄	0.28
<i>x</i> ₅	0.13
<i>x</i> ₆	0.1
<i>x</i> ₇	0.06

- i- Find all other code parameters (k, R_c and t)
- ii- Determine the first codeword polynomial C(x) for the input word [0110000000]
- iii- Draw the encoder circuit
- iv- Find the syndrome polynomial for the received word $R(x) = x^4 + x$.
- **6-** Answer TRUE or FALSE and correct the FALSE statement.

No.	Statement
1	Source code is used to reduce channel errors.
2	Cascading of more than one BSC channel reduces the composite channel capacity
3	ARQ is more efficient than FEC
4	The size of look ahead buffer is usually 10 times that of search buffer in LZ77 compressor.
5	Run Length Encoding is a universal data compression technique.

7.

- (a) Find the channel capacity (in bps) if the bandwidth B=100 kHz and S/N = 30 dB.
- (b) Consider colored (24 bits/pixel) image with dimension of 1200x800 pixels/frame, and equal probable pixels. Find:
 - i- the amount of information carried by one image frame (in bits/frame).
 - ii- the rate of information (in bps), if 2000 frames are sent within 100 sec.
 - iii- the required signal to noise power ration (dB) in (ii) if the channel bandwidth is 40 MHz.
- (c) Find the efficiency of ternary source with P(x1) = P(x2) = 3.P(x3).

8. Consider 6-symbol source with given probabilities;

8 I,						
					X_5	
P(x _i)	0.11	0.21	А	0.17	0.08	0.15

- (b) Construct binary Huffman code for the source.
- (c) Determine the source and code efficiency.
- (d) Is the code decodable? Why?
- (e) Find the probability of binary "0" and "1" at encoder output

9- LZ77 decompressor received the shown tokens; find the decoded (decompressed sequence) and the compression factor.

Distance	0	1	1	1	6
Match Length	0	1	1	1	6
Next Char.	А	В	С	А	A

10.__Consider an information transmission system consisting of:

Source -- Binary Source Code -- Binary Symmetric Channel -- Source Decoder

The source is given

Xi	X ₁	X_2	X ₃	X ₄	X5	by:
P(x _i)	0.3	0.2	0.22	0.17	0.11	5

The error probability of the channel Pe=0.1

Use **any two** of the following source codes:

1- Suitable Fixed Length code 2- Fano Source Code 3- Huffman Source Code

Then for each selected code find:

a- The code efficiency b- The probabilities of "0" and "1" after the channel

- **11**. Consider the following binary code:
 - 1- Is the given code decodable? Why?
 - 2- Find L of the given code
 - 3- Construct fixed length code.
 - 4- Which has more efficiency? (the given or fixed length code)

Symbol x _i	Probability P _{xi}	Given Code	Li	Fixed Length Code
<i>x</i> ₁	0.25	00		
<i>x</i> ₂	0.25	11		
<i>x</i> ₃	0.125	100		
<i>x</i> ₄	0.125	101		
<i>x</i> ₅	0.25	01		