1- The $2^{\text {nd }}$ moment about the origin is the mean square value

Answe
2- Maximum information transmission is obtained when we have independent transmission.

1- True 2- False 3- False 4- False 5- False 6- True	2-Maximum information when noiseless channel 3-Entropy of the source is always +ve 4-Nyquist theorem is $R_{x} \leq 2 B$ 5-The bandwidth exp.factor of ECC is given by $(n / k) .100 \%$.
1- True 2- True 3- False 4- True 5- False 6- True	3-The number of check bits in even-PCC is 1 . 5-The mean of the random variable represents its DC level.
1- True 2- True 3- False 4- False 5- True 6- False	3- The following relation is true $\mathrm{H}(\mathrm{x}) \geq \mathrm{I}$. $4-\mathrm{dBm}$ is a measure for signal power when measured in mWatt. 6- Prefix property of source code is important in decoding
1- True 2- False 3- True 4- False 5- False 6- False	2- Shannon-Hartley equation state that $\mathrm{C}_{\mathrm{r}}=\mathrm{B} \cdot \log _{2}(1+\mathrm{S} / \mathrm{N})$ 4- The check bit is determined by $\overline{X O R}$ of all message bits. 5-Max. source entropy is obtained when CRV has Gaussian pdf. 6-Huffman code is always better than Fanso code
1- False 2- False 3- True 4- True 5- True 6- False	1-The unit of Av. length of ternary code is Ternary unit/Symbol. 2-The dimension of the parity check matrix H for LBC is (n-k)xn. 6-The conditional entropy $\mathrm{H}(\mathrm{y} \mid \mathrm{x})$ is also called noise entropy.
1- False 2- False 3- False 4- True 5- True 6- False	1-The conditional entropy $\mathrm{H}(\mathrm{x} \mid \mathrm{y})$ is also called losses entropy. 2-ASCII code is example of even-PCC code. 3-The av. mutual info.can be calculated by $\mathrm{I}=\mathrm{H}(\mathrm{y})-\mathrm{H}(\mathrm{y} \mid \mathrm{x})$ 6-The capacity is increased as the noise power (N) is decreased

1- The joint entropy $\mathrm{H}(\mathrm{x}, \mathrm{y})$ is given by $\mathrm{H}(\mathrm{x})+\mathrm{H}(\mathrm{y})$ always 2- The mutual information may be negative value. 3- The number of check bits in BRC is 1 . 4- Source code is used to reduce channel errors. 5- The capacity of noiseless ternary channel is $\log _{2} 3$ Bits/symbol 6- The pdf of Normal or Gaussian random variable is non-symmetric about its mean.	1- False 2- True 3- False 4- False 5- True 6- False	1-Only for independent transmission 3-The number of check bits in BRC is even and >1. 4-Source code is used to match the channel alphabet. 6-The pdf of Gaussian RV is symmetric about its mean.
1- $\mathrm{H}(\mathrm{x})$ for certain binary source is $2 \mathrm{Bits} /$ Symbol 2- Shannon-Fano code can be considered as a statistical compression method. 3- Channel coding is used to match the channel alphabet. 4- Source entropy is maximum when all discrete symbols of the source are equal probable. 5- Good source code must be unique, decodable, and has the least average length. 6- The channel probability matrix is given by the probability $\mathrm{P}(\mathrm{x} \mid \mathrm{y})$.	1- False 2- True 3- True 4- True 5- True 6- False	$1-\mathrm{H}(\mathrm{x})$ for certain binary source is should be <1 Bits/Symbol 6-The channel prob. matrix is given by the probability $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$.
1- Noiseless channel has maximum capacity with equal probable source symbols. 2- The source entropy $H(x)$ for continues source depends on the mean of x 3- The columns of the parity check matrix H may be " 0 ". 4- The bandwidth expansion of PCC is greater than that of BRC for the same word length. 5- The capacity of BSC is increased when the error probability P_{e} is also increased. 6- The pdf of CRV may be greater than 1.	1- True 2- False 3- False 4- False 5- False 6- False	$2-H(x)$ for cont. source depends on the variance of x 3-The columns of the parity check matrix H is non-zero. 4-The bandwidth expansion of PCC is less than that of BRC. 5-The capacity of BSC is decreased when P_{e} is also increased. 6 -The pdf of CRV should be ≤ 1

