CHAPTER 3 Questions to Guide Your Review

- 1. What is the derivative of a function f? How is its domain related to the domain of f? Give examples.
- 2. What role does the derivative play in defining slopes, tangent lines, and rates of change?
- 3. How can you sometimes graph the derivative of a function when all you have is a table of the function's values?
- **4.** What does it mean for a function to be differentiable on an open interval? On a closed interval?
- 5. How are derivatives and one-sided derivatives related?
- **6.** Describe geometrically when a function typically does *not* have a derivative at a point.
- 7. How is a function's differentiability at a point related to its continuity there, if at all?
- 8. What rules do you know for calculating derivatives? Give some examples.
- 9. Explain how the three formulas

a.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 b. $\frac{d}{dx}(cu) = c\frac{du}{dx}$

b.
$$\frac{d}{dx}(cu) = c\frac{du}{dx}$$

c.
$$\frac{d}{dx}(u_1 + u_2 + \dots + u_n) = \frac{du_1}{dx} + \frac{du_2}{dx} + \dots + \frac{du_n}{dx}$$

enable us to differentiate any polynomial.

- 10. What formula do we need, in addition to the three listed in Question 9, to differentiate rational functions?
- 11. What is a second derivative? A third derivative? How many derivatives do the functions you know have? Give examples.
- 12. What is the relationship between a function's average and instantaneous rates of change? Give an example.
- 13. How do derivatives arise in the study of motion? What can you learn about an object's motion along a line by examining the derivatives of the object's position function? Give examples.

- 14. How can derivatives arise in economics?
- 15. Give examples of still other applications of derivatives.
- **16.** What do the limits $\lim_{h\to 0} ((\sin h)/h)$ and $\lim_{h\to 0} ((\cos h-1)/h)$ have to do with the derivatives of the sine and cosine functions? What are the derivatives of these functions?
- 17. Once you know the derivatives of $\sin x$ and $\cos x$, how can you find the derivatives of $\tan x$, $\cot x$, $\sec x$, and $\csc x$? What are the derivatives of these functions?
- 18. At what points are the six basic trigonometric functions continuous? How do you know?
- 19. What is the rule for calculating the derivative of a composition of two differentiable functions? How is such a derivative evaluated? Give examples.
- **20.** If u is a differentiable function of x, how do you find $(d/dx)(u^n)$ if n is an integer? If n is a real number? Give examples.
- 21. What is implicit differentiation? When do you need it? Give examples.
- 22. How do related rates problems arise? Give examples.
- 23. Outline a strategy for solving related rates problems. Illustrate with an example.
- **24.** What is the linearization L(x) of a function f(x) at a point x = a? What is required of f at a for the linearization to exist? How are linearizations used? Give examples.
- **25.** If x moves from a to a nearby value a + dx, how do you estimate the corresponding change in the value of a differentiable function f(x)? How do you estimate the relative change? The percentage change? Give an example.

CHAPTER 3 Practice Exercises

Derivatives of Functions

Find the derivatives of the functions in Exercises 1-40.

1.
$$y = x^5 - 0.125x^2 + 0.25$$

1.
$$y = x^5 - 0.125x^2 + 0.25x$$
 2. $y = 3 - 0.7x^3 + 0.3x^7$

3.
$$y = x^3 - 3(x^2 + \pi^2)$$

3.
$$y = x^3 - 3(x^2 + \pi^2)$$
 4. $y = x^7 + \sqrt{7}x - \frac{1}{\pi + 1}$

5.
$$y = (x + 1)^2(x^2 + 2x)$$

5.
$$y = (x + 1)^2(x^2 + 2x)$$
 6. $y = (2x - 5)(4 - x)^{-1}$

7.
$$y = (\theta^2 + \sec \theta + 1)$$

7.
$$y = (\theta^2 + \sec \theta + 1)^3$$
 8. $y = \left(-1 - \frac{\csc \theta}{2} - \frac{\theta^2}{4}\right)^2$

9.
$$s = \frac{\sqrt{t}}{1 + \sqrt{t}}$$

10.
$$s = \frac{1}{\sqrt{t-1}}$$

11.
$$y = 2\tan^2 x - \sec^2 x$$
 12. $y = \frac{1}{\sin^2 x} - \frac{2}{\sin x}$

12.
$$y = \frac{1}{\sin^2 x} - \frac{2}{\sin^2 x}$$

13.
$$s = \cos^4(1 - 2t)$$
 14. $s = \cot^3\left(\frac{2}{t}\right)$

14.
$$s = \cot^3 \left(\frac{2}{t}\right)^{\frac{1}{2}}$$

15.
$$s = (\sec t + \tan t)^5$$

17.
$$r = \sqrt{2\theta \sin \theta}$$

10
$$r = \sin \sqrt{2\theta}$$

$$19. r = \sin \sqrt{2\theta}$$

21.
$$y = \frac{1}{2}x^2 \csc \frac{2}{x}$$

23.
$$y = x^{-1/2} \sec(2x)^2$$

25.
$$y = 5 \cot x^2$$

27.
$$y = x^2 \sin^2(2x^2)$$

29.
$$s = \left(\frac{4t}{t+1}\right)^{-2}$$

$$\mathbf{31.} \ \ y = \left(\frac{\sqrt{x}}{1+x}\right)^2$$

33.
$$y = \sqrt{\frac{x^2 + x}{x^2}}$$

16.
$$s = \csc^5(1 - t + 3t^2)$$

18.
$$r = 2\theta \sqrt{\cos \theta}$$

20.
$$r = \sin (\theta + \sqrt{\theta + 1})$$

$$22. \ y = 2\sqrt{x} \sin \sqrt{x}$$

24.
$$y = \sqrt{x} \csc(x+1)^3$$

26.
$$y = x^2 \cot 5x$$

28. $y = x^{-2} \sin^2(x^3)$

28.
$$y = x^{-2} \sin^2(x^3)$$

30.
$$s = \frac{-1}{15(15t - 1)^3}$$

32.
$$y = \left(\frac{2\sqrt{x}}{2\sqrt{x}+1}\right)^2$$

34.
$$y = 4x\sqrt{x + \sqrt{x}}$$

35.
$$r = \left(\frac{\sin \theta}{\cos \theta - 1}\right)^2$$
 36. $r = \left(\frac{1 + \sin \theta}{1 - \cos \theta}\right)^2$ **37.** $y = (2x + 1)\sqrt{2x + 1}$ **38.** $y = 20(3x - 4)^{1/4}$

$$36. \ \ r = \left(\frac{1 + \sin \theta}{1 - \cos \theta}\right)^2$$

37.
$$y = (2x + 1)\sqrt{2x + 1}$$

38.
$$y = 20(3x - 4)^{1/4}(3x - 4)^{-1/5}$$

$$39. \ y = \frac{3}{(5x^2 + \sin 2x)^{3/2}}$$

40.
$$y = (3 + \cos^3 3x)^{-1/3}$$

Implicit Differentiation

In Exercises 41–48, find dy/dx by implicit differentiation.

41.
$$xy + 2x + 3y = 1$$

41.
$$xy + 2x + 3y = 1$$
 42. $x^2 + xy + y^2 - 5x = 2$

43.
$$x^3 + 4xy - 3y^{4/3} = 2x$$
 44. $5x^{4/5} + 10y^{6/5} = 15$

44.
$$5x^{4/5} + 10y^{6/5} = 15$$

45.
$$\sqrt{xy} = 1$$

46.
$$x^2y^2 = 1$$

47.
$$y^2 = \frac{x}{x+1}$$

48.
$$y^2 = \sqrt{\frac{1+x}{1-x}}$$

In Exercises 49 and 50, find dp/dq.

49.
$$p^3 + 4pq - 3q^2 = 2$$
 50. $q = (5p^2 + 2p)^{-3/2}$

50.
$$q = (5p^2 + 2p)^{-3/2}$$

In Exercises 51 and 52, find dr/ds.

51.
$$r \cos 2s + \sin^2 s = \pi$$

52.
$$2rs - r - s + s^2 = -3$$

53. Find d^2y/dx^2 by implicit differentiation:

a.
$$x^3 + y^3 = 1$$

b.
$$y^2 = 1 - \frac{2}{r}$$

54. a. By differentiating
$$x^2 - y^2 = 1$$
 implicitly, show that $dy/dx = x/y$.

b. Then show that
$$d^2y/dx^2 = -1/y^3$$
.

Numerical Values of Derivatives

55. Suppose that functions f(x) and g(x) and their first derivatives have the following values at x = 0 and x = 1.

x	f(x)	g(x)	f'(x)	g'(x)
0	1	1	-3	1/2
1	3	5	1/2	-4

Find the first derivatives of the following combinations at the given value of x.

a.
$$6f(x) - g(x), \quad x = 1$$

b.
$$f(x)g^2(x)$$
, $x = 0$

c.
$$\frac{f(x)}{g(x)+1}$$
, $x=1$ **d.** $f(g(x))$, $x=0$

d.
$$f(g(x)), \quad x = 0$$

e.
$$g(f(x)), x = 0$$

f.
$$(x + f(x))^{3/2}$$
, $x = 1$

g.
$$f(x + g(x)), x = 0$$

56. Suppose that the function f(x) and its first derivative have the following values at x = 0 and x = 1.

x	f(x)	f'(x)
0	9	-2
1	-3	1/5

Find the first derivatives of the following combinations at the given value of x.

a.
$$\sqrt{x} f(x), \quad x = 1$$

b.
$$\sqrt{f(x)}, x = 0$$

c.
$$f(\sqrt{x}) \quad x = \frac{1}{2}$$

c.
$$f(\sqrt{x}), x = 1$$
 d. $f(1 - 5 \tan x), x = 0$

e.
$$\frac{f(x)}{2 + \cos x}$$
, $x = 0$

e.
$$\frac{f(x)}{2 + \cos x}$$
, $x = 0$ **f.** $10 \sin \left(\frac{\pi x}{2}\right) f^2(x)$, $x = 1$

57. Find the value of dy/dt at t = 0 if $y = 3 \sin 2x$ and $x = t^2 + \pi$.

58. Find the value of ds/du at u=2 if $s=t^2+5t$ and $t=t^2+5t$ $(u^2 + 2u)^{1/3}$.

59. Find the value of dw/ds at s=0 if $w=\sin(\sqrt{r}-2)$ and $r = 8 \sin{(s + \pi/6)}$.

60. Find the value of dr/dt at t=0 if $r=(\theta^2+7)^{1/3}$ and $\theta^2 t + \theta = 1.$

61. If $y^3 + y = 2 \cos x$, find the value of d^2y/dx^2 at the point (0, 1).

62. If $x^{1/3} + y^{1/3} = 4$, find d^2y/dx^2 at the point (8, 8).

Applying the Derivative Definition

In Exercises 63 and 64, find the derivative using the definition.

63.
$$f(t) = \frac{1}{2t+1}$$

64.
$$g(x) = 2x^2 + 1$$

65. a. Graph the function

$$f(x) = \begin{cases} x^2, & -1 \le x < 0 \\ -x^2, & 0 \le x \le 1. \end{cases}$$

b. Is f continuous at x = 0?

c. Is f differentiable at x = 0?

Give reasons for your answers.

66. a. Graph the function

$$f(x) = \begin{cases} x, & -1 \le x < 0 \\ \tan x, & 0 \le x \le \pi/4. \end{cases}$$

b. Is f continuous at x = 0?

c. Is f differentiable at x = 0?

Give reasons for your answers.

67. a. Graph the function

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2. \end{cases}$$

b. Is f continuous at x = 1?

c. Is f differentiable at x = 1?

Give reasons for your answers.

68. For what value or values of the constant m, if any, is

$$f(x) = \begin{cases} \sin 2x, & x \le 0 \\ mx, & x > 0 \end{cases}$$

a. continuous at x = 0?

b. differentiable at x = 0?

Give reasons for your answers.

Slopes, Tangents, and Normals

- 69. Tangent lines with specified slope Are there any points on the curve y = (x/2) + 1/(2x - 4) where the slope is -3/2? If so, find them.
- 70. Tangent lines with specified slope Are there any points on the curve y = x - 1/2x where the slope is 2? If so, find them.