Subject: Information Theory and Coding Problems \#1 Probability and Information

1- A biased die with $\mathrm{P}(\mathrm{odd})=2 . \mathrm{P}($ even $)$ is considered as the random experiment. Let x_{i} be the top face number as the outcome of the experiment.
(a) Find the sample space (values of x_{i}) and their probabilities.
(b) If the above die is thrown for 8 times, find the probability of ;

1-No Odd numbers occurred 2-Even number occurred at most 6 times
2- Let x has the following pdf ; $\quad f(x)=\left\{\begin{array}{lll}A & \text { for } & -1<\mathrm{x}<0 \\ 0.5 A & \text { for } & 1<\mathrm{x}<2 \\ 0 & & \text { elsewhere }\end{array}\right.$
(a) Find A and sketch the $f(x)$ and $F(x)$.
(b) Find $\bar{x}, \overline{x^{2}}$, and the variance σ^{2}

3- Consider joint random variables x and y , with the following joint pdf ;

$$
f(x, y)=\left\{\begin{array}{lcc}
K x & \text { for } & 0<x<2 \\
& \text { and } & 0<y<4 \\
0 & & \text { elsewhere }
\end{array}\right.
$$

(a) Find the constant $\mathrm{K}, \mathrm{f}(\mathrm{x})$ and $\mathrm{f}(\mathrm{y})$.
(b) Find \bar{x}, and $\overline{y^{2}}$
(c) From the results of (a) could you decide whether x and y are independent or not.

4- Three balls are drawn successively at random from a box containing 6 red balls, 4 white balls, and 5 green balls. Find the probability that they are drawn in the order red, white, and green, if each ball is (a) Replaced (b) Not replaced.

5- Let the random variable x_{i} is defined as the sum of the two numbers occurring in the experiment of the throwing two dice. Then:
(a) Find all possible values of x_{i} with their probabilities
(b) Find $\mathrm{P}(\mathrm{x}>9), \mathrm{P}(2<\mathrm{x}<8), \mathrm{P}(\mathrm{x}=$ odd $), \mathrm{P}(\mathrm{x}<10)$
(c) Find: $\bar{x}, \overline{x^{2}}, \sigma^{2}, \mathrm{E}\left[4 \mathrm{x}^{2}\right], \mathrm{E}\left[(\mathrm{x}+2)^{2}\right]$

6- Consider four-digit Octal number, then:
i-How many possible numbers if the $1^{\text {st }}$ digit is non-zero ii- As in (i) but considering even numbers greater than 6000

7- For CRV defined by the pdf beside;

$$
\begin{array}{rlrlrl}
& =0.25 & \text { for } & -1<x<0 \\
f(x) & =0.5 & \text { for } & 1 & <x<A
\end{array}
$$

(a) Find the value of A
(b) If the above is considered as an information source find its entropy
8. The joint probability matrix of ternary channel is given by;

$$
P\left(x_{i}, y_{j}\right)=\left[\begin{array}{ccc}
0.32 & 0.04 & 0.04 \\
0.02 & 0.16 & 0.02 \\
0.04 & 0.04 & 0.32
\end{array}\right]
$$

(a) Find all $P\left(x_{i}\right)$ and $P\left(y_{j}\right)$
(b) Find the channel matrix $P\left(y_{j} \mid x_{i}\right)$ and channel model.
(c) Find both the source and channel efficiencies
9. Find the efficiency of the continues source described by the following pdf:

$$
\begin{aligned}
f(x) & =0.25 & \text { for } & -2<x<2 \\
& =0 & & \text { Elsewhere }
\end{aligned}
$$

10. Transmission system over continues channel with bandwidth of 20 MHz needs signal to noise power ratio $(\mathrm{S} / \mathrm{N})$ of 30 dB :
a- Determine the resultant bit rate in bps.
b- If it is required to double the above rate while keeping the bandwidth unchanged, what is the new value of the signal to noise power ratio $(\mathrm{S} / \mathrm{N})$ in dB
11. Find the amount of information provided by each of the following systems;
a- Computer file storage for 30 sec . recording of source having an entropy of 3 bits/symbol and an average symbol rate R_{x} of $10 \mathrm{k} \mathrm{symbol} / \mathrm{s}$.
b- Ten frames of gray scale digital image with the following specifications:
Image frame dimension $=800 \times 600$ pixels/frame, Gray scale image having 256 different levels, The pixels are equal probable to have any level.
12. Consider binary channel with:

$$
\mathrm{P}\left(0_{\mathrm{T}}\right)=0.5, \mathrm{P}\left(0_{\mathrm{R}} \mid 1_{\mathrm{T}}\right)=0.1 \& \mathrm{P}\left(0_{\mathrm{R}} \mid 0_{\mathrm{T}}\right)=0.9, \mathrm{P}\left(1_{\mathrm{R}} \mid 0_{\mathrm{T}}\right)=0 \& \mathrm{P}\left(1_{\mathrm{R}} \mid 1_{\mathrm{T}}\right)=1
$$

Find: $\mathbf{P}\left(\mathbf{1}_{T}\right), \mathbf{P}\left(\mathbf{0}_{\mathrm{R}}, \mathbf{0}_{\mathrm{T}}\right), \mathbf{P}\left(\mathbf{0}_{\mathrm{R}}\right)$ and $\mathrm{P}\left(\mathbf{1}_{\mathrm{R}}\right)$
13- Consider the following ternary channel;

$$
P\left(y_{j} \mid x_{i}\right)=\left[\begin{array}{ccc}
0.7 & 0.3 & 0 \\
0 & 0.7 & 0.3 \\
0.3 & 0 & 0.7
\end{array}\right]
$$

If $p(x 1)=p(x 2)=p(x 3)$, then
(a) Specify whether the channel is symmetric or not
(b) Find the source entropy
(c) Find the average mutual information I (in bits/symbol).
(d) Find both the source and channel efficiencies

14- Use the channel model shown beside:

$$
P(y / x)=\begin{array}{cccc}
& y 1 & y 2 & y 3 \\
x 1 & 0.9 & 0 & 0.1 \\
x 2 & 0 & 1 & 0 \\
x 3 & 0.1 & 0 & 0.9
\end{array}
$$

a) Is the channel symmetric or noiseless?
b) Find $\mathrm{p}\left(\mathrm{x}_{3}\right)$ and source efficiency
c) Find $\mathrm{H}(\mathrm{y}), \mathrm{H}(\mathrm{y} \mid \mathrm{x})$, and I

