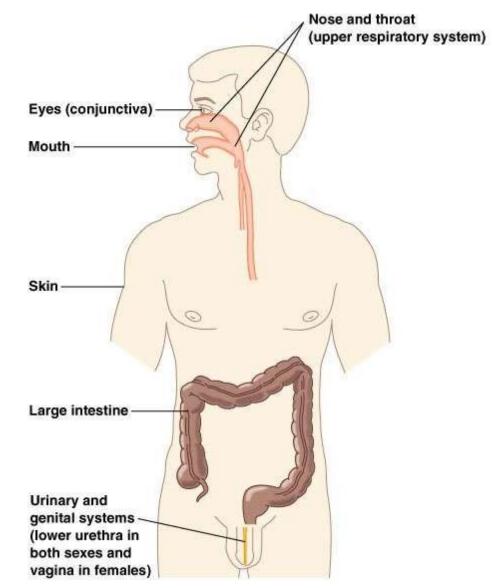
Host Defense Mechanisms (non-specific(

Dr. athemar Mohamed redh bedair

Host Defenses

Resistance


- Ability to ward off disease
- Varies among organisms and individuals within the same species
- Immunity mechanisms used by the body as protection against microbes and other foreign agents; self vs. non-self
- Nonspecific immunity (innate, natural)
 - Defenses against any pathogen
- Specific immunity
 - Resistance to a specific pathogen

Host Defenses

First line of defense Second line of defense • Intact skin • Phagocytic white blood cells • Mucous membranes and their secretions • Inflammation • Normal microbiota • Fever	
Mucous membranes blood cells and their secretions Inflammation	Third line of defense
Normal microbiota Fever Antimicrobial substances	 Specialized lymphocytes: B cells and T cells Antibodies

5

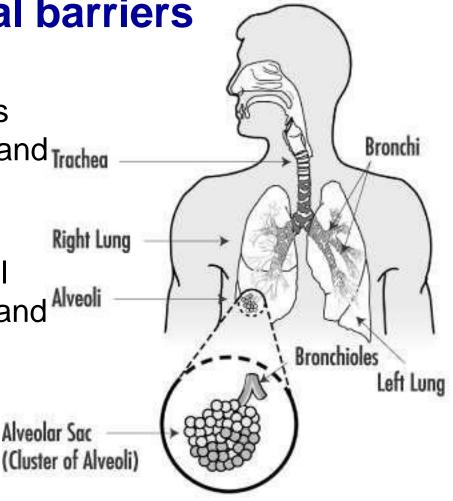
- Intact, unbroken skin (Broken skin = port of entry(
 - Almost all bacteria are incapable to penetrate a few helminths (hookworm & schistosoma) may
 - skin predominantly inhabited by *Staphylococcus* epidermidis
 - How?
 - Dryness
 - temperature
 - Low pH (acidic) of skin:
 - bacteriocidal secretion by the sebaceous glands
 - Desquamation sloughing of epithelium
 - Perspiration (sweat contain lysozymes attack bacterial cell wall(
 - Exception: *Staphylococcus aureus* in moist area

• Eyes

- Blinking of eyelids
- Tears containing lysozymes
- Outer ear canal

- Wax contains antibacterial components

- Mucus membranes layers of mucosal cells that line body cavities that open to the outside (digestive, genitourinary and respiratory tracts(
 - Mucus is produced by the mucosal cells
 - Contains antimicrobial substance such as lysozymes. lactoferrin (sequester iron(
 - Mucosal cells are rapidly dividing → flush out of body along with attached bacteria



• Digestive tract

- Mouth and lower digestive tract lots of bacteria (mostly anaerobes e.g. *Bacteroides,* anaerobic streptococci [*Streptococcus mutans* in mouth] and *Clostridium* in colon(
- How?
 - Mucus
 - Saliva (contains lysozyme(
 - Bile (alkaline) in small intestine
 - Stomach acids
 - Defecation (feces contains up to 50% bacteria(!
 - Mucus contain antibacterial agents, antibodies and immune cells called phagocytes

- Respiratory tract
 - Nose nasal hair, mucus secretions (phagocytes and Trachea antibacterial enzymes), irregular chambers
 - ciliated epithelium (nasal cavity, sinuses, bronchi and ^{Alveoli} trachea(
 - Cough reflexes
 - Alveolar macrophages

- Microbial antagonism
 - Normal flora vs. invaders
 - Compete for colonization sites
 - Compete for nutrients
 - Produce bacteriocins
 - Administration of broad spectrum antibiotics may kill only certain members of the normal flora, leaving the others to overgrow → superinfection

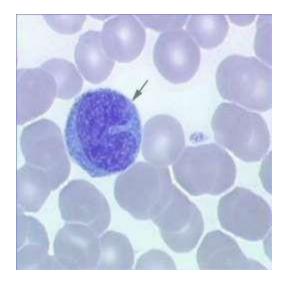
- Once beyond the protective outer barrier of the body, the invading microbes will encounter a series of nonspecific cellular and chemical defense mechanisms
- Mechanisms:
 - Inflammation a series of events that removes or contain the offending agent and repair the damage
 - Chemotaxis movement of cells toward a chemical influence)chemokines or chemotatic agents(
 - Phagocytosis process in which cell ingest foreign particulate matter e.g. microbes
- Many are carried out by the white blood cells in blood

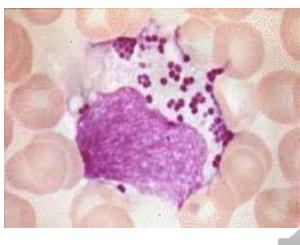
Blood Components

- Fluid portion
 - Serum: liquid portion of clotted blood
 - Plasma: liquid portion with clotting factors
 - "Plasma can clot; Serum cannot"
 - Contains antibodies & other proteins
- Clotting factors (proteins(
 - Fibrinogen
 - Prothrombin
- Formed elements
 - Erythrocytes red blood cells (RBC) carry oxygen and carbon dioxide; no nucleus
 - Leukocytes white blood cells (WBC) defense
 - Platelets thrombocyte particles clotting; no nucleus

Monocyte (Macrophage(

Monocytes (the blood form(

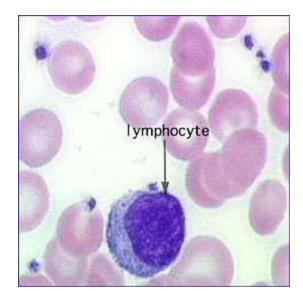

- the largest WBC's normally found in blood
- horseshoe or "U" shape nucleus, or it may be folded


•travel to different tissue to mature into specific macrophage

Macrophage

•As it developed from monocytes, its size can increase 2-3 times

- Wandering motile and travel in bloodstream; found throughout body
- •Fixed (histiocytes)– attached and remain in the tissue
- Removal and engulfment of foreign particles and useless body cells/material



Lymphocytes

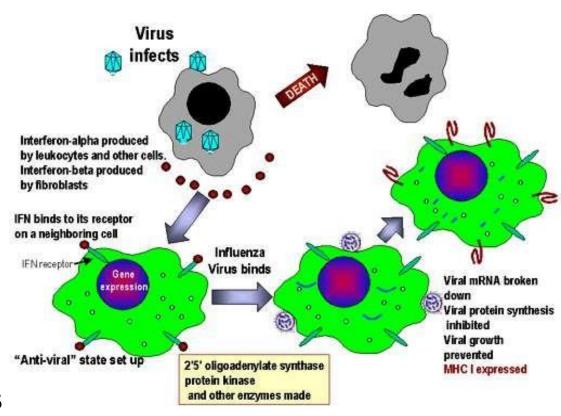
•The lymphocyte nucleus is usually round to slightly indented with a sharply defined edge, and deep, dense purple. Cytoplasm may be scant or form a narrow rim around the nucleus.

•Cornerstone of the immune system: antibodies production & cell-mediated immunity

Acute phase proteins

- set of plasma proteins whose level increases during infection to enhance host defense mechanisms
- e.g. complement proteins, coagulating factors, transferrins

Cytokines

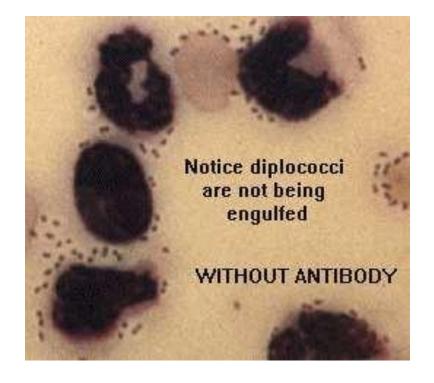

- small secreted proteins produced by cells
- Communication between different defense systems
- Examples: interleukins, interferons

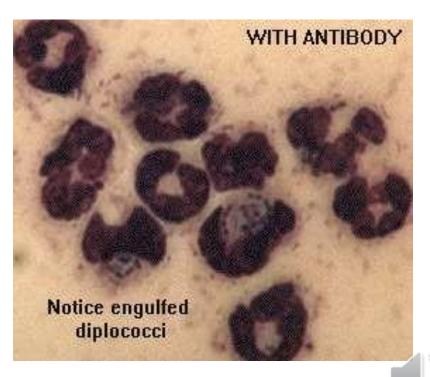
- Fever
 - Pyrogens are substances that stimulate fever
 - External, e.g. bacterial endotoxin
 - Internal (endogenous), e.g. interleukins (IL-(1
 - Body temperature increases in response to pyrogens to:
 - Stimulate WBC to deploy & destroy microbes
 - increase in immunological response (e.g. proliferation and activation of lymphocytes(
 - Slow down growth of or kill pathogens

- Interferons
 - Anti-viral proteins produced by virusinfected cells (eventually died(
 - Alert system to prevent virus from infecting other cells and to stimulate certain lymphocytes

-Has been used a experimental therapy (nowadays, many are genetically engineered) for viral infections and cancers

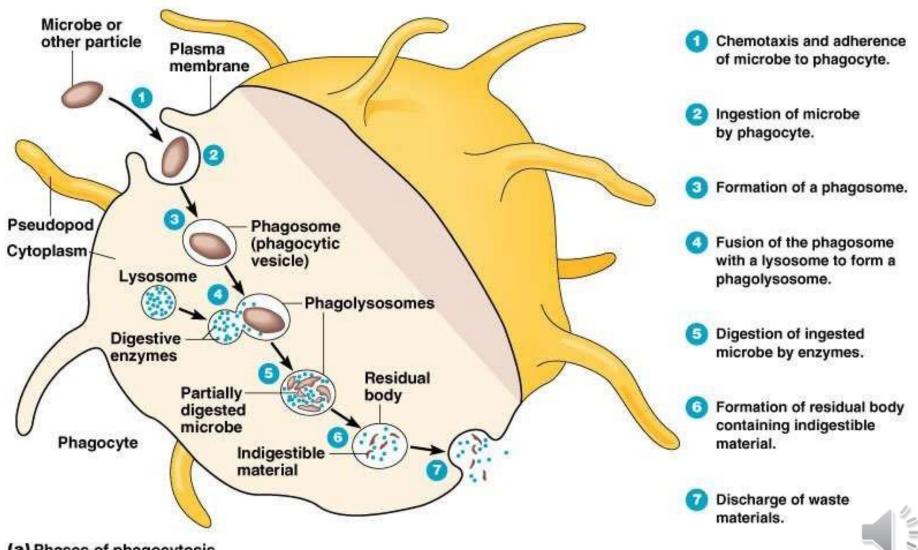
- Species-specific for host cells




- The complement systems
 - Consists of ~30 proteins that complement the action of the immune system
 - Functions:
 - Inflammation
 - Stimulate leukocytes
 - Lyse bacteria
 - Increase phagocytosis by opsonization

Opsonization

- Process by which phagocytosis is facilatated by deposition of opsonins
- Opsonins can be complement proteins, or antibodies
- e.g. encapsulated bacteria
- Deficiency in complement system may lead to increase susceptibility to certain infections.



- *Phagocytosis* is the ingestion of microorganisms or other matter by a cell. Many white blood cells engulf invasive microorganisms by the process of phagocytosis. The steps in phagocytosis are:
 - .1 *Chemotaxis* is the process by which phagocytes are attracted to microorganisms.
 - .2 Attachment. The phagocyte then adheres to the microbial cell. This adherence may be facilitated by opsonization coating the microbe with plasma proteins.
 - .3 *Ingestion*: Pseudopods of phagocytes engulf the microorganism and enclose it in a phagosome to complete ingestion.
 - .4 *Digestion*: Lysosomes fuse with the phagosome to form a digestive vacuole. The microbe is killed and digested.

Phagocytosis

(a) Phases of phagocytosis