AL- MUSTAQBAL UNIVERSITY College Of Health And Medical Techniques Prosthetic Dental Techniques Department Second Grade Second Semester

Advanced chemistry

Lecture 19 (The theoretical part)

By: Prof.Dr. Hussein Kadhem AL-Hakeim

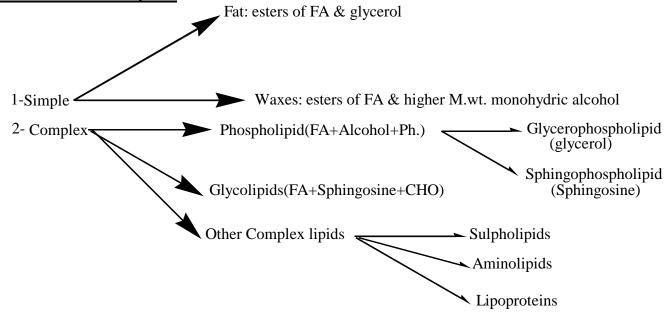
Giving the lecture

Assist.Prof.Dr.Ahmed A. AL-Khafagi

Role of Biological Lipids-Basic Biochemistry of Fatty Acids-Physiologically Relevant Fatty Acids-Basic Structure of Complex Lipids-Triacylglycerides-Phospholipids-Plasmalogens-Sphingolipids-Metabolism of Lipids-Triacylglycerides-Phospholipids-Sphingolipids-Eicosanoids-Cholesterol and Bile Acids

Lecture 19

Lipids: Biological molecules that are insoluble in aqueous solutions and soluble in organic solvents are classified as lipids.


*-Neutral lipids(e.g. cholesterol esters, triglyceride..) are uncharged molecules.

Major Roles of Biological of Lipids:

The lipids of physiological importance for humans have four major functions:

- 1. They serve as structural components of biological membranes.
- 2. They provide energy reserves, predominantly in the form of triacylglycerols.
- 3. Both lipids and lipid derivatives serve as vitamins and hormones.
- **4.** Lipophilic bile acids aid in lipid solubilization.
- 5. Serve as thermal and electrical insulator.

Classification of Lipids:

3-Precursors and derived lipids: FA,Steroids, Ketone bodies, Some hormones, lipid soluble vitamines.

1-Fatty Acids:

Fatty acids are long-chain hydrocarbon molecules containing a carboxylic acid moiety at one end. *Fatty acids fill two major roles in the body:

- **1.** As the components of more complex membrane lipids.
- 2. As the major components of stored fat in the form of triacylglycerols.
- * <u>Saturated fatty acids</u>: Fatty acids that contain no carbon-carbon double bonds.

* Unsaturated fatty acids: Fatty acids that contain double bonds.

Fatty acids may be further subdivided as follows:

(1) Monounsaturated (monoethenoid, monoenoic) acids, containing one double bond.

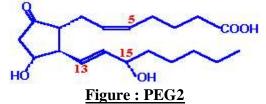
- (2) Polyunsaturated (polyethenoid, polyenoic) acids, containing two or more double bonds.
- (3) Eicosanoids: These compounds, derived from eicosa- (20-carbon) polyenoic fatty acids, comprise the

prostanoids, leukotrienes (LTs), and lipoxins (LXs). Prostanoids include prostaglandins (PGs), prostacyclins (PGIs), and thromboxanes (TXs).

#The site of unsaturation in a fatty acid is indicated by the symbol Δ and the number of the first carbon of the double bond (e.g. palmitoleic acid is a 16-carbon fatty acid with one site of unsaturation between carbons 9 and 10, and is designated by $16:1^{\Delta 9}$).

@ Naturally occurred unsaturated FA occurs in cis-form.

@ Body can biosynthesize lipids and can supply the body with all the various fatty acid structures needed except the essential FA.


*Essential fatty acids; must be provided in the diet (the highly unsaturated fatty acids: linoleic acid and linolenic acid) because they containing unsaturation sites beyond carbons 9 and 10.

Physiologically Relevant Fatty Acids:

Numerical Symbol	Common Name	Structure	Comments
14:0	Myristic acid	CH ₃ (CH ₂) ₁₂ COOH	
16:0	Palmitic acid	CH ₃ (CH ₂) ₁₄ COOH	End product of mammalian F.A. synthesis
16:1 ^{Δ9}	Palmitoleic acid	CH ₃ (CH ₂) ₅ C=C(CH ₂) ₇ COOH	
18:0	Stearic acid	CH ₃ (CH ₂) ₁₆ COOH	
18:1 ^{Δ9}	Oleic acid	CH ₃ (CH ₂) ₇ C=C(CH ₂) ₇ COOH	
18:2 ^{Δ9,12}	Linoleic acid	CH ₃ (CH ₂) ₄ C=CCH ₂ C=C(CH ₂) ₇ COOH	Essential fatty acid
18:3 ^{49,12,15}	Linolenic acid	CH ₃ CH ₂ C=CCH ₂ C=CCH ₂ C=C(CH ₂) ₇ COOH	Essential fatty acid
20:4 ^{Δ5,8,11,14}	Arachidonic acid	CH ₃ (CH ₂) ₃ (CH ₂ C=C) ₄ (CH ₂) ₃ COOH	Precursor for eicosanoid synthesis

&&Prostaglandines:

Synthesized *in vivo* by cyclation of the center of the (20C-atoms unsaturated FA that called Eicosanoic acid) to form cyclopentane cycle. Examples of prostaglandins: thromboxane, prostaglandine 2 (PGE2)

2-Basic Structure of Triacylglycerides

Triacylglycerides (TG) are composed of a glycerol backbone to which 3 fatty acids are esterified. TG are the stored lipids in the body tissues.

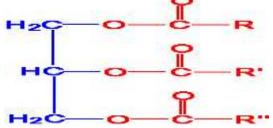
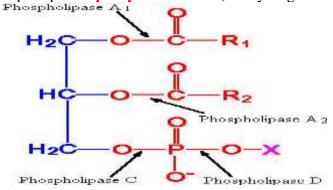



Figure: Basic composition of a triacylglyceride

<u>3-Basic Structure of Phospholipids</u>

The basic structure of phospolipids is very similar to that of the triacylglycerides except that C-3 of the glycerol backbone is esterified to phosphoric acid.

*The building block of the phospholipids is **phosphatidic acid** (X= hydrogen atom).

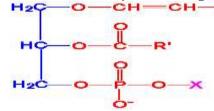
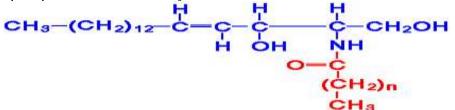


Figure: Basic composition of a phospholipid. X can be a number of different substituents. *Substitutions include ethanolamine (**phosphatidylethanolamine**), choline (**phosphatidylcholine**, also called **lecithins**), serine (**phosphatidylserine**), glycerol (**phosphatidylglycerol**), *myo*-inositol (**phosphatidylinositol**,, and phosphatidylglycerol (**diphosphatidylglycerol** more commonly known as **cardiolipins**).

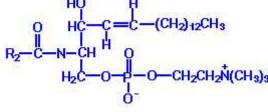
4-Basic Structure of Plasmalogens

Plasmalogens are phospholipids substituted at C-1 (sn1) of glycerol contain either an O-alkyl or Oalkenyl ether species. One of the most potent biological molecules is **platelet activating factor**.

Figure: basic composition of O-alkenyl plasmalogens.


<u>5-Basic Structure of Sphingolipids</u>

*Sphingolipids are composed of a backbone of <u>sphingosine</u> which is derived itself from glycerol.


Figure: Sphingosine

* Ceramides: A family of molecules composed of sphingosine when N-acetylated by a variety of fatty acids. Sphingolipids predominate in the myelin sheath of nerve fibers.

Figure: Ceramide

<u>*Sphingomyelin</u> is an abundant sphingolipid generated by transfer of the phosphocholine moiety of phosphatidylcholine to a ceramide, thus sphingomyelin is a unique form of a phospholipid.

Figure: Sphingomyelin

The other major class of sphingolipids (besides the sphingomyelins) are the **glycosphingolipids** generated by substitution of carbohydrates to the *sn1* carbon of the glycerol backbone of a ceramide. There are 4 major classes of glycosphingolipids:

Cerebrosides: contain a single moiety, principally galactose.

Sulfatides: sulfuric acid esters of galactocerebrosides.

Globosides: contain 2 or more sugars.

Gangliosides: similar to globosides except also contain sialic acid.

6- Steroids:

Steroids are lipids derived from the cyclopentanophenanethrine.

Cholesterol is an extremely important biological steroids: 1-Constituent of plasma membrane and lipoproteins 2- precursor for the synthesis of the steroid hormones, sex hormones, vitamine D, and bile acids. @@ Both dietary cholesterol and that synthesized *de novo* are transported through the circulation in lipoprotein particles. The same is true of cholesteryl esters, the form in which cholesterol is stored in cells.

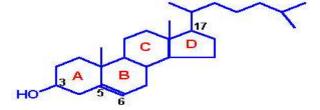


Figure: Cholesterol

Lipid Peroxidation:

It is a chain reaction providing continuous supply of free radicals (ROO, RO, and OH) that initiates further peroxidation.

This process causes different disorders: rancidity (auto oxidation of lipids by oxygen), aging, cancer, atherosclerosis, inflammation, damage to tissue in vivo.

Notes:

@<u>Amphipathic molecule:</u> Part of the molecule is hydrophilic (polar) and the other is hydrophobic (non-polar). Polar group faces the water phase and the non-polar faces the hydrophobic phases (oil); this is the main feature of plasma membrane.

@ Micelles: Critical concentration of polar lipids in aqueous medium.

@ Liposome: Consist of spheres of lipid layers that enclose part of water.

@ Emulsion: Larger particles formed by non-polar lipids in an aqueous medium.

#-Aggregation of bile salts into micelles and liposomes with th product of fat digestion are important in facilitating absorption of lipids from intestine.