

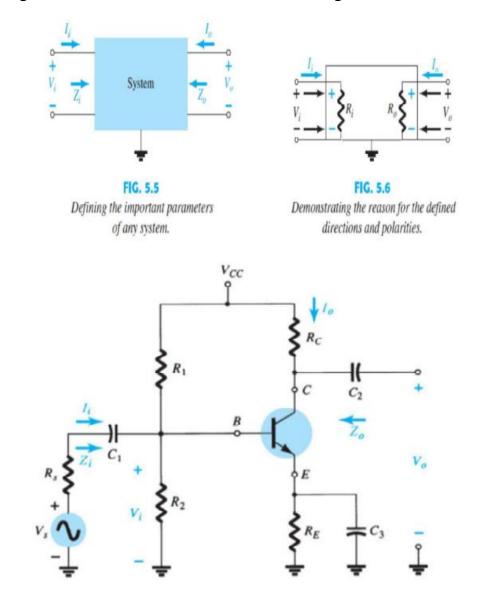
Subject: Electronic Circuits Lecturer: Dr. Rami Qays Malik Lecture: 11- Small-Signal Amplifier

Small-Signal Amplifier

The basic construction, appearance, and characteristics of the transistor were introduced in Chapter 3 .We now begin to examine the ac response of the BJT amplifier by reviewing the *models* most frequently used to represent the transistor in the sinusoidal ac domain.

One of our first concerns in the sinusoidal ac analysis of transistor networks is the magnitude of the input signal. It will determine whether *small-signal* or *large-signal* techniques should be applied. There is no set dividing line between the two, but the application—and the magnitude of the variables of interest relative to the scales of the device characteristics will usually make it quite clear which method is appropriate. The small-signal technique is introduced in this Lecture.

There are three models commonly used in the small-signal ac analysis of transistor networks: the *re* model, the hybrid p model, and the hybrid equivalent model.


Class: 2nd

Subject: Electronic Circuits Lecturer: Dr. Rami Qays Malik Lecture: 11- Small-Signal Amplifier

the ac equivalent of a transistor network is obtained by:

- 1. Setting all dc sources to zero and replacing them by a short-circuit equivalent
- 2. Replacing all capacitors by a short-circuit equivalent
- 3. Removing all elements bypassed by the short-circuit equivalents introduced by steps1 and 2
- 4. Redrawing the network in a more convenient and logical form

Subject: Electronic Circuits Lecturer: Dr. Rami Qays Malik Lecture: 11- Small-Signal Amplifier A WASTER TO STATE OF THE PARTY OF THE PARTY

re model:

The re model for the CE, CB, and CC BJT transistor configurations will now be introduced with a short description of why each is a good approximation to the actual behavior of a BJT transistor.

Common-Emitter Configuration

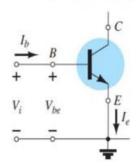
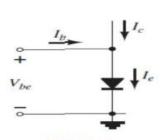
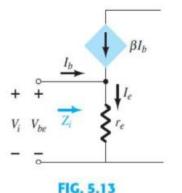



FIG. 5.8


Finding the input equivalent circuit for a BJT transistor.

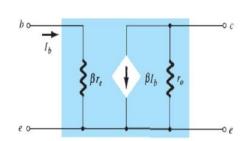
Equivalent circuit for the input side of a BJT transistor.

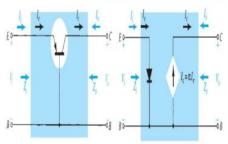
Now, for the input side: $Z_i = \frac{V_i}{I_b} = \frac{V_{be}}{I_b}$ Solving for V_{be} : $V_{be} = I_e r_e = (I_c + I_b) r_e = (\beta I_b + I_b) r_e$ $= (\beta + 1) I_b r_e$ and $Z_i = \frac{V_{be}}{I_b} = \frac{(\beta + 1) I_b r_e}{I_b}$

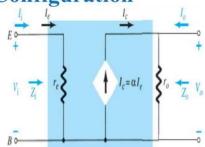
 $Z_i = (\beta + 1)r_e \cong \beta r_e$

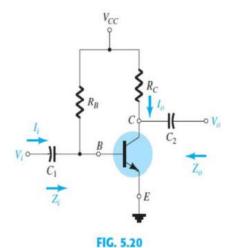
Defining the level of Z.

Subject: Electronic Circuits Lecturer: Dr. Rami Qays Malik

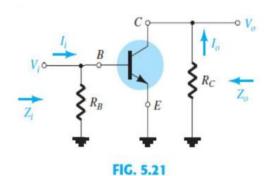

Lecture: 11- Small-Signal Amplifier


output impedance


$$r_o \cong \frac{V_A}{I_{C_Q}}$$



Common-Base Configuration



COMMON-EMITTER FIXED-BIAS CONFIGURATION

Common-emitter fixed-bias configuration.

Network of Fig. 5.20 following the removal of the effects of VCC, C1, and C2.

Al-Mustaqbal University College of Engineering and Technologies


Medical Instrumentation Technique Engineering Department

Class: 2nd

Subject: Electronic Circuits Lecturer: Dr. Rami Qays Malik

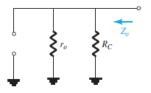
Lecture: 11- Small-Signal Amplifier

The equivalent network of common-emitter fixed bias can be redrawn as the following

Z_i Figure 5.22 clearly shows that

$$Z_i = R_B \| \beta r_e \quad \text{ohms} \tag{5.5}$$

For the majority of situations R_B is greater than βr_e by more than a factor of 10 (recall from the analysis of parallel elements that the total resistance of two parallel resistors is always less than the smallest and very close to the smallest if one is much larger than the other), permitting the following approximation:


$$Z_i \cong \beta r_e$$
 ohms (5.6)

Z₀ Recall that the output impedance of any system is defined as the impedance Z_0 determined when $V_i = 0$. For Fig. 5.22, when $V_i = 0$, $I_i = I_b = 0$, resulting in an opencircuit equivalence for the current source. The result is the configuration of Fig. 5.23. We have

$$Z_o = R_C \| r_o$$
 ohms (5.7)

If $r_0 \ge 10R_C$, the approximation $R_C \| r_0 \cong R_C$ is frequently applied, and

$$\boxed{Z_o \cong R_C} \qquad \qquad r_o \ge 10R_C \tag{5.8}$$

Determining Zo for the network of Fig. 5.22.

The resistors r_o and R_C are in parallel, and

$$V_o = -\beta I_b (R_C \| r_o)$$
but
$$I_b = \frac{V_i}{\beta r_e}$$
so that
$$V_o = -\beta \left(\frac{V_i}{\beta r_e} \right) (R_C \| r_o)$$
and
$$A_v = \frac{V_o}{V_i} = -\frac{(R_C \| r_o)}{r_e}$$
(5.9)

If $r_o \ge 10R_C$, so that the effect of r_o can be ignored,

$$A_{v} = -\frac{R_{C}}{r_{e}}$$

$$r \ge 10R_{-}$$

$$(5.10)$$

Note the explicit absence of β in Eqs. (5.9) and (5.10), although we recognize that β must be utilized to determine r_e .

Class: 2nd

Subject: Electronic Circuits Lecturer: Dr. Rami Qays Malik

Lecture: 11- Small-Signal Amplifier

EXAMPLE 5.1 For the network of Fig. 5.25:

- a. Determine r_e .
- b. Find Z_i (with $r_o = \infty \Omega$).
- c. Calculate Z_o (with $r_o = \infty \Omega$).
- d. Determine A_v (with r_o = ∞Ω).
- e. Repeat parts (c) and (d) including $r_o = 50 \, \mathrm{k}\Omega$ in all calculations and compare results.

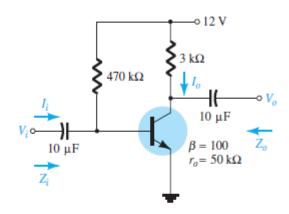


FIG. 5.25 Example 5.1.

Solution:

a. DC analysis:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 \text{ V} - 0.7 \text{ V}}{470 \text{ k}\Omega} = 24.04 \,\mu\text{A}$$

$$I_E = (\beta + 1)I_B = (101)(24.04 \,\mu\text{A}) = 2.428 \,\text{mA}$$

$$r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{2.428 \,\text{mA}} = 10.71 \,\Omega$$

b. $\beta r_e = (100)(10.71 \ \Omega) = 1.071 \ k\Omega$

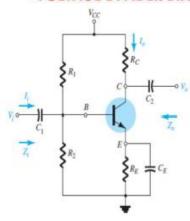
$$Z_i = R_B \| \beta r_e = 470 \,\mathrm{k}\Omega \| 1.071 \,\mathrm{k}\Omega = 1.07 \,\mathrm{k}\Omega$$

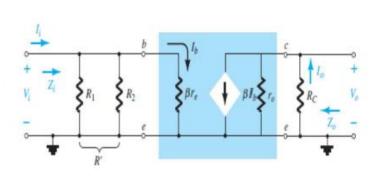
c.
$$Z_o = R_C = 3 \text{ k}\Omega$$

d. $A_v = -\frac{R_C}{r_e} = -\frac{3 \text{ k}\Omega}{10.71 \Omega} = -280.11$

e.
$$Z_o = r_o \| R_C = 50 \text{ k}\Omega \| 3 \text{ k}\Omega = 2.83 \text{ k}\Omega \text{ vs. } 3 \text{ k}\Omega$$

 $A_v = -\frac{r_o \| R_C}{r_e} = \frac{2.83 \text{ k}\Omega}{10.71 \Omega} = -264.24 \text{ vs. } -280.11$


Class: 2nd


Subject: Electronic Circuits Lecturer: Dr. Rami Qays Malik

Lecture: 11- Small-Signal Amplifier

VOLTAGE-DIVIDER BIAS

$$R' = R_1 \| R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

Input impedance

$$Z_i = R' \| \beta r_e$$

Zo From Fig below with Vi set to 0 V, resulting in Ib = 0 mA and $\beta l_b = 0$ mA

$$Z_o = R_C \| r_o \tag{5.13}$$

If $r_o \geq 10R_C$,

$$Z_o \cong R_C \qquad (5.14)$$

 A_V Because R_C and r_o are in parallel,

$$V_o = -(\beta I_b)(R_C \| r_o)$$

and

$$I_b = \frac{V_i}{\beta r_e}$$

so that

$$V_o = -\beta \left(\frac{V_i}{\beta r_e}\right) (R_C || r_o)$$

and

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{-R_{C} \| r_{o}}{r_{e}}$$
 (5.15)

which you will note is an exact duplicate of the equation obtained for the fixed-bias configuration.

For $r_o \geq 10R_C$,

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{R_{C}}{r_{e}}$$

$$r_{o} \approx 10R_{C}$$
(5.16)

Class: 2nd

Subject: Electronic Circuits Lecturer: Dr. Rami Qays Malik Lecture: 11- Small-Signal Amplifier

EXAMPLE 5.2 For the network of Fig. 5.28, determine:

- b. Z_i .
- c. $Z_o(r_o = \infty \Omega)$.
- d. $A_{\nu}(r_o = \infty \Omega)$.
- e. The parameters of parts (b) through (d) if $r_0 = 50 \,\mathrm{k}\Omega$ and compare results.

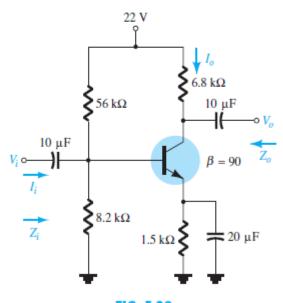


FIG. 5.28 Example 5.2.

Solution:

a. DC: Testing $\beta R_E > 10R_2$,

$$(90)(1.5 \text{ k}\Omega) > 10(8.2 \text{ k}\Omega)$$

 $135 \text{ k}\Omega > 82 \text{ k}\Omega \text{ (satisfied)}$

Using the approximate approach, we obtain

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} = \frac{(8.2 \text{ k}\Omega)(22 \text{ V})}{56 \text{ k}\Omega + 8.2 \text{ k}\Omega} = 2.81 \text{ V}$$

$$V_E = V_B - V_{BE} = 2.81 \text{ V} - 0.7 \text{ V} = 2.11 \text{ V}$$

$$I_E = \frac{V_E}{R_E} = \frac{2.11 \text{ V}}{1.5 \text{ k}\Omega} = 1.41 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{1.41 \text{ mA}} = 18.44 \Omega$$

Class: 2nd

Subject: Electronic Circuits Lecturer: Dr. Rami Qays Malik Lecture: 11- Small-Signal Amplifier

b.
$$R' = R_1 \| R_2 = (56 \text{ k}\Omega) \| (8.2 \text{ k}\Omega) = 7.15 \text{ k}\Omega$$

 $Z_i = R' \| \beta r_e = 7.15 \text{ k}\Omega \| (90)(18.44 \Omega) = 7.15 \text{ k}\Omega \| 1.66 \text{ k}\Omega$
 $= 1.35 \text{ k}\Omega$

c.
$$Z_o = R_C = 6.8 \,\mathrm{k}\Omega$$

c.
$$Z_o = R_C = 6.8 \text{ k}\Omega$$

d. $A_v = -\frac{R_C}{r_e} = -\frac{6.8 \text{ k}\Omega}{18.44 \Omega} = -368.76$

e.
$$Z_i = 1.35 \text{ k}\Omega$$

$$Z_o = R_C \| r_o = 6.8 \,\mathrm{k}\Omega \| 50 \,\mathrm{k}\Omega = 5.98 \,\mathrm{k}\Omega \,\,\mathrm{vs.}\, 6.8 \,\mathrm{k}\Omega$$

$$A_v = -\frac{R_C \| r_o}{r_e} = -\frac{5.98 \text{ k}\Omega}{18.44 \Omega} = -324.3 \text{ vs.} -368.76$$

There was a measurable difference in the results for Z_o and A_v , because the condition $r_o \ge 10R_C$ was not satisfied.