Al-Mustaqbal University Science college Dep. Medical Physics

Medical Physics

Second Stage

Lab2

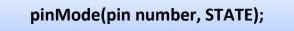
Computer 4

MS.c Mortada Sabri MS.c Noor Mohammed

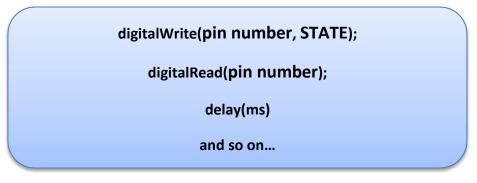
Programming of Arduino:

The concept of programming is generally composed of two main parts: variables and functions. The language of the Arduino also contains these two concepts.

In Arduino programming we need three phases:


1- **Variables**: uses of variables and constants to facilitate the naming of Inputs and Outputs of the microcontroller:

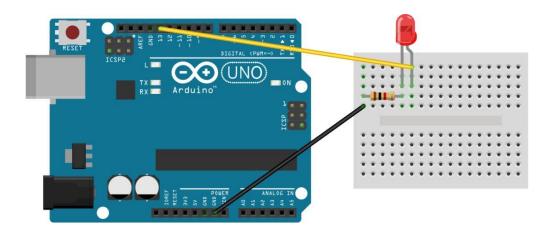
Ex: int led=3;


2- **Initialization**: The microcontroller features that its pins can be either input or output, so at this phase must determine whether the pin is input or output. This phase is done by a **setup()** function:

Void setup () {write your configurations here}

Ex: pinMode(led, OUTPUT);

3- Implementation: At this phase, the main code is written inside the loop() function, which will be read and repeated repeatedly:
 Void loop () {your program}


- 1- Each programming line ends with a semicolon.
- 2- The Arduino programming language is written in camel style.
- 3- Often the state written in capital letters (ex: INPUT, OUTPUT, HIGH, LOW and so on...).
- 4- There are two ways to write comments:
 - a- One line comment: add // (ex: //Hello World)
 - b- More than one line: add /**/ (ex: /*Hello World*/)
- 5- The condition is written as follows:
 - a- for(){} else{} or else if(){}
 - b- switch() case1; case2; ... break; default;
- 6- Repetition writes as follows:
 - a- while (){}
 - b- for(;;){}

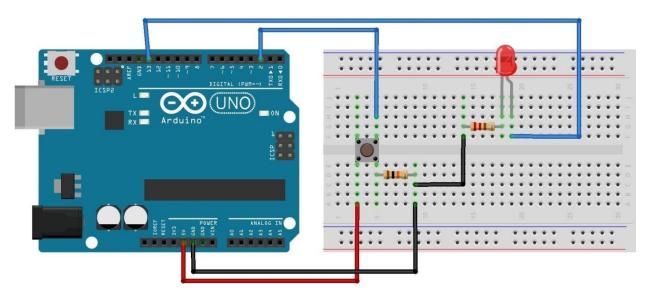
Example 1:

(Blinking led)

Requirements: Arduino, BreadBoard, Resistor, Led, wires.

Connection map:

Code:


```
int LED = 13;
void setup ()
{
    pinMode(LED, OUTPUT);
    }
void loop()
{
    digitalWrite(LED, HIGH);
    delay(1000);
    digitalWrite(LED, LOW);
    delay(1000);
}
```

Example 2:

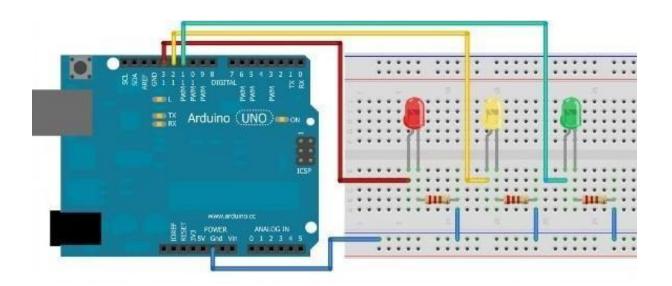
(Turn on the led by Push bottom)

Requirements: Arduino, BreadBoard, 2Resistor, Led, Push bottom, wires.

Connection map:

Code:

```
int led = 13;
int button = 2;
void setup() {
pinMode(led, OUTPUT);
pinMode(button, INPUT);
}
void loop() {
if(digitalRead(button)==HIGH){
digitalWrite(led, HIGH);
}
}
```


Quizzes

Quiz1:

(Traffic light)

Requirements: Arduino, BreadBoard, 3Resistor, 3Led, wires.

Connection map:

Code:

```
int GREEN = 3;
int YELLOW = 4;
int RED = 5;
void setup()
{
    pinMode(GREEN, OUTPUT);
    pinMode(YELLOW, OUTPUT);
    pinMode(RED, OUTPUT);
```

```
}
```

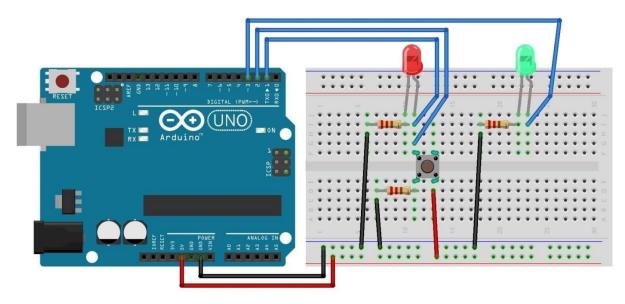
Al-Mustaqbal University Dep. Medical Physics

```
void loop()
{
```

```
digitalWrite(GREEN, HIGH);
digitalWrite(YELLOW, LOW);
digitalWrite(RED, LOW);
delay(5000);
```

```
digitalWrite(GREEN, LOW);
digitalWrite(YELLOW, HIGH);
digitalWrite(RED, LOW);
delay(2000);
```

```
digitalWrite(GREEN, LOW);
digitalWrite(YELLOW, LOW);
digitalWrite(RED, HIGH);
delay(5000);
```


}

Quiz3:

(Waiting system)

Requirements: Arduino, BreadBoard, 3Resistor, 2Led, Push bottom, wires.

Connection map:


```
Code:
```

int led1 = 3;

```
int led2 = 5;
```

```
int button = 1;
```

```
void setup ()
```

{

```
pinMode(led1, OUTPUT);
```

pinMode(led2, OUTPUT);

pinMode(button, INPUT);

}

```
void loop ( )
```

{

```
if (digitalRead(button) == HIGH) {
  digitalWrite(led1, LOW);
  digitalWrite(led2, HIGH);
  delay(5000);
  digitalWrite(led1, HIGH);
  digitalWrite(led2, LOW);
  }else{
   digitalWrite(led1, HIGH);
  }
}
```

Solution of H.W lab1:

1- Compare between microcontroller and microprocessor?

microcontroller	microprocessor
1- have RAM, ROM, EEPROM embedded in it	1- have to use external circuits
2- on single chip it is compact so it makes them favorable and efficient system for small products and applications	2- is bulky so they are preferred for larger applications
3- Made by using complementary metal oxide semiconductor technology so they are far cheaper than microprocessors. In addition the applications made with it are cheaper because they need lesser external components	3- the overall cost of systems made with it are high because of the high number of external components required for such systems
4- Processing speed is about 8 MHz to 50 MHz	4- above 1 GHz so it works much faster than microcontrollers
5- have power saving system	5- no power saving system
6- Tasks performed by it are limited and generally less complex	6- task performed by it are software development, Game development, website, documents making etc

Name	Processor	Operating Voltage	CPU Speed	Analog In/ Out	Digital IO/ PWM	EEP RO M	SRAM (KB)	Flash (KB)
Uno	ATmega328	5 V/7-12 V	16MHz	6/0	14/6	1	2	32
Due	AT91SAM3X 8E	3.3 V/7-12 V	84 MHz	12/0	54/12	_	96	512
Leonar do	ATmega32u4	5 V/7-12 V	16MHz	12/0	20/7	1	2.5	32
Mega 2560	ATmega2560	5 V/7-12 V	16MHz	16/0	54/15	4	8	256
Mega ADK	ATmega2560	5 V/7-12 V	16MHz	16/0	54/15	4	8	256
Micro	ATmega32u4	5 V/7-12 V	16MHz	12/0	20/7	1	2.5	32
Mini	ATmega328	5 V/7-9 V	16MHz	8/0	14/6	1	2	32

2- What types of Arduino? And why did these species exist?

Nano	ATmega168	5 V/7-9 V	16MHz	8/0	14/6	0.51 21	1	16
Ethern et	ATmega328	5 V/7-12 V	16MHz	6/0	14/4	1	2	32
Esplor a	ATmega32u4	5 V/7-12 V	16MHz	_	_	1	2.5	32
Arduin oBT	ATmega328	5 V/2.5-12 V	16MHz	6/0	14/6	1	2	32
Fio	ATmega328P	3.3 V/3.7-7 V	8MHz	8/0	14/6	1	2	32
Pro (168)	ATmega168	3.3 V/3.35- 12 V	8MHz	6/0	14/6	0.51 2	1	16
Pro (328)	ATmega328	5 V/5-12 V	16MHz	6/0	14/6	1	2	32
Pro Mini	ATmega168	3.3 V/3.35- 12 V	8MHz	6/0	14/6	0.51 2	1	16

LilyPad	ATmega168V	2.7-5.5 V/2.7-5.5 V	8MHz	6/0	14/6	0.51 2	1	16
LilyPad USB	ATmega32u4	3.3 V/3.8- 5V	8MHz	4/0	9/4	1	2.5	32
LilyPad	ATmega328	2.7-5.5 V/2.7-5.5 V	8MHz	4/0	9/4	1	2	32

<u>H.W</u>

- 1- What is the difference between data and information?
- 2- What is the difference between signal and System?
- 3- Compare between digital and analog signals?
- 4- What is the PCM?