WATER PIPING SYSTEMS DESIGN Part1
Lecture -10-
M.Sc. Zahraa F. Hussain

- All open piping systems have at least one point where atmospheric pressure is exerted on the surface of the water.
- This is the reference point for determination of hydrostatic lift imposed on the pump.

- The hydrostatic lift is the vertical distance in feet between the water level on the suction side of the pump and the highest water level on the discharge side of the pump.


## In an open system

In an open system, the suction reservoir may be at a different elevation than the discharge reservoir. The pump must overcome the frictional losses of the system, plus the hydrostatic lift, or the difference in elevation between the two reservoirs., as shown in Fig. 1


## In a closed system

- In a closed system a pump must overcome only the frictional resistance of the system.
The discharge reservoir is also the suction reservoir so there is no difference in elevation and consequently no hydrostatic lift for the
 pump to overcome, as shown in Fig. 2


## What is the Reversed and Direct return?

## 1. Reverse return piping.



- If the units have the same or nearly the same pressure drop through them, one of the reverse return methods of piping is recommended.
- Reverse return piping is recommended for most closed piping applications. It is often the most economical design on new construction.


## Water Piping System Return Arrangements 2. Direct return piping.



- However, if the units have different pressure drops or require balancing valves, then it is usually more economical to use a direct return.


## Reverse return piping system



Reverse return header with direct return risers

## Direct return piping system



Direct return header with direct return risers

## WATER CONDITIONING

- Normally all water piping systems must have adequate treatment to protect the various components against corrosion, scale, slime and algae.
- Water treatment should always be under the supervision of a water conditioning specialist. Periodic inspection of the water is required to maintain suitable.


## PIPE SIZING

1. Maximum velocity permissible which is established by: a-Noise generated by water flowing through piping.
b-Erosion of piping by water and entrained sand, air and other foreign particles
2. Friction loss:

- Once through systems must be sized to provide the required flow at a pressure loss within the pressure available after all other losses (Condenser Pressure Drop, Hydrostatic and Line, Valve and Fitting Losses) have been deducted.
- Re-circulating pump systems are sized to provide a reasonable balance between increased pumping horsepower due to high friction loss and increased piping first cost due to larger pipe sizes.


## DESIGN LIMITATIONS

1. Velocity - between 1 and $3.6 \mathrm{~m} / \mathrm{s}$, as shown in table 1and table 2.
2. Friction Loss - maximum 300 kPa . per 100 meter equivalent length.

- The system should be laid out with valves, fittings, length of runs and water quantities shown for all mains and branches. The size of the mains should be determined first and tabulated as shown in Table 5.
- The pressure should be indicated at the points in the system where branch run outs are taken.


## WATER PIPING FOR COOLING TOWER SYSTEM

To select the proper water piping for a cooling tower system, the following information must be available:

1. Volume flow rate of water to be circulated.
2. Total length of piping.
3. Pressure drop across condenser (this varies widely and must be obtained from equipment manufacturer).
4. Hydrostatic lift of tower.
5. Number of valves, fittings and any other resistances in piping system.
6. Type of pipe used (Copper Tubing or Iron Pipe).

## Example 1:

- Size the pipe system for a cooling tower shown in Fig. 4 with the following information:
- 1- Total length of piping 25.5 m
- 2- Water flow rate 2 lit/s
- 3- Pressure drop across condenser at $5 \mathrm{lit} / \mathrm{s}=79 \mathrm{kPa}$.
- 4 - Hydrostatic lift across tower $=1.5 \mathrm{~m}$
- 5- 6 standard $90^{\circ}$ elbows
- 6-2 Gate valves
- 7- 1 standard tee through side outlet
- 8-1 standard tee straight through.



## Solution:

1. From table 1, the recommended velocity for header and riser are between 1 to $3.6 \mathrm{~m} / \mathrm{s}$,

| ! . . .1..... | 1. |
| :---: | :---: |
| Service | Velocity m/s |
| Pump discharge | 2.5-3.6 |
| Pump suction | 1.3-2.2 |
| Drain line | 1.3-2.2 |
| Header | 1.3-3.6 |
| Riser | 1-3 |
| General service | 1-3 |
| City water | 1-2.2 |

From chart (2) for fairly rough pipe, the intersection between 2 lit/s and $2 \mathrm{~m} / \mathrm{s}$, the recommended pipe diameter is 40 mm , and the pressure drop is $181 \mathrm{kPa} / 100 \mathrm{~m}$.

$$
\mathrm{Q}=2 \mathrm{lit} / \mathrm{s}
$$

$\mathrm{C}=2 \mathrm{~m} / \mathrm{s}$

## Pressure loss or friction loss

- In the piping system the pressure is taken as a the pipe length and the equivalent fittings or valves length in meter

| No. | Type | Leq | No. or length | Length | Net length |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Straight pipe |  |  |  |  |
| 2 | standard $90^{\circ}$ elbows |  |  |  |  |
| (table 4) |  |  |  |  |  |
| 3 | Gate valve (table 3) |  |  |  |  |
| 4 | standard tee |  |  |  |  |
| through side outlet |  |  |  |  |  |
| 5 | standard tee straight |  |  |  |  |
| through |  |  |  |  |  |
| Hydrostatic lift |  |  |  |  |  |
| across tower |  |  |  |  |  |
| Total |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |





| No. | Type | Leq | No. or <br> length | Length | Net length |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Straight pipe | 1 | 25.5 | 25.5 | 25.5 |
| 2 | standard $90^{\circ}$ elbows (table 4) | 1.22 | 6 | $6 \times 1.22$ | 7.32 |
| 3 | Gate valve (table 3) |  |  |  |  |
| 4 | standard tee through side outlet | 2.44 | 1 | $1 \times 2.44$ | 2.44 |
| 5 | standard tee straight through | 0.793 | 1 | $1 \times 0.793$ | 0.8 |
| 6 | Hydrostatic lift across tower |  |  |  |  |
|  | Total |  |  |  |  |

## 2 Gate valves



2 Gate valves $\quad \mathrm{Leq}=549 \mathrm{~mm}=0.549 \mathrm{~m}$

Table (3) Valve loss in equivalent (mm) length

| Nominal diameter mm | B |  |  | $\begin{gathered} \text { B } \\ \text { B } \\ \text { bo } \end{gathered}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Globe | Angle |  | Angle | Gate | Swing Check | Y type strainer |  |
|  |  | $60^{\circ} \mathrm{Y}$ | $45^{\circ} \mathrm{Y}$ |  |  |  | Flanged | Screwed end |
| 10 | 5185 | 2440 | 1830 | 1830 | 183 | 1525 | ------ | ------ |
| 15 | 5490 | 2745 | 2135 | 2135 | 2135 | 1830 | -- | 915 |
| 20 | 6710 | 3355 | 2745 | 2745 | 275 | 2440 | ------ | 1220 |
| 25 | 8845 | 4575 | 3660 | 3660 | 305 | 3050 | ------ | 1525 |
| 32 | 11590 | 6100 | 4575 | 4575 | 458 | 4270 | --- | 2745 |
| 40 | 13115 | 7320 | 5490 | 5490 | 549 | 4880 | ------ | 3050 |
| 50 | 16775 | 9150 | 7320 | 7320 | 702 | 6100 | 8235 | 4270 |
| 65 | 21045 | 10675 | 8845 | 8845 | 854 | 7625 | 8540 | 6100 |
| 80 | 30500 | 15250 | 12505 | 12505 | 1220 | 10675 | 14640 | ----- |
| 100 | 36600 | 17690 | 14335 | 14335 | 1373 | 12200 | 18300 | --- |
| 125 | 42700 | 21655 | 17690 | 17690 | 1830 | 15250 | 24400 | ------ |
| 150 | 51850 | 26840 | 21350 |  | 2135 | 18300 | 33550 | --- |


| No. | Type | Leq | No. or length | Length | Net length |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Straight pipe | 1 | 25.5 | 25.5 | 25.5 |
| $\mathbf{2}$ | standard $90^{\circ}$ elbows <br> (table 4) | 1.22 | 6 | $6 \times 1.22$ | 7.32 |
| $\mathbf{3}$ | Gate valve (table 3) | 0.549 | 2 | $2 \times 0.549$ | 1.1 |
| $\mathbf{4}$ | standard tee through <br> side outlet | 2.44 | 1 | $1 \times 2.44$ | 2.44 |
| $\mathbf{5}$ | standard tee straight | 0.793 | 1 | $1 \times 0.793$ | 0.8 |
| through <br> Hydrostatic lift across <br> tower |  |  |  |  |  |
| Total |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## Hydrostatic lift across tower $=1.5 \mathrm{~m}$

| No. | Type | Leq | No. or length | Length | Net length |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Straight pipe | 1 | 25.5 | 25.5 | 25.5 |
| $\mathbf{2}$ | standard $90^{\circ}$ elbows <br> (table 4) | 1.22 | 6 | $6 \times 1.22$ | 7.32 |
| $\mathbf{3}$ | Gate valve (table 3) | 0.549 | 2 | $2 \times 0.549$ | 1.1 |
| $\mathbf{4}$ | standard tee through <br> side outlet | 2.44 | 1 | $1 \times 2.44$ | 2.44 |
| $\mathbf{5}$ | standard tee straight <br> through <br> Hydrostatic lift across <br> tower | 0.793 | 1 | 1 | $1 \times 0.793$ |
| 6 Total | 1.5 | 0.8 |  |  |  |
|  |  |  | 1.5 | 1.5 |  |

- Equivalent length Pressure drop due pipe length, valves and fittings=39m
- (39) $* \frac{181}{100}=71 \mathrm{kPa}$.
- Pressure drop across condenser at $2 \mathrm{lit} / \mathrm{s}=$ 79 kPa
- Total pressure loss= 71+79=150 kPa.

