Unit-Impulse Response of First-Order Systems.

For the unit-impulse input,

R(s) = 1 and the output of the system of Figure 5-1(a) can be obtained as

1
Ts+1

C(s) =

The inverse Laplace transform of Equation (5-7) gives

1
gl =,

forr =0

The response curve given by Equation (5-8) is shown in Figure 5—4.

clt) |

0 t
Post- Test
This value must be 0.2, Thus, Then &, s from Equation (3-23),
V= = 05 - .
WKIE-8 2WKi-1
o = ,f == B
=16l
Vi1-g
which yields Rise iimet,:  From Equation (3-19). the rise time 1, is
£ = 0.456
-8
The peak time 1, is specified as | sec: therefore, from Equation (3-20), L= o
™
=] i
or o
= 124 =tan 105 =
wy =314 pB=tan = tan™ 195 = L1D
Si is 0.456, w, is .
Sl i aiy g Thus 1, is
w, = = = 357
Ll 1, = Db sec
Since the natural frequency w, is equal 1o VR T . Sﬂ:ﬁng fimet,: For the 2% criterion,
K= Juw=wl=125N-m i
[=—=248sec
r
For the 5% criterion,
=== 18 sec
T
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. Overview

Target Population: For students of fourth stage for Medical Instrument Department in
Electrical Engineering Technical College
Rationale: A Control Systems Engineer is responsible for designing, developing, and
implementing solutions that control dynamic systems.
Central Ideas: Control Systems Engineering is the engineering approach taken to
understand how the process can be managed by automation devices and to implement
such into operation.
Objectives: After completing this lecture, the student will be able to:
Define the stability in control system.
Describe the Routh criteria.
Describe the Nyquist method.
2. Pre-Test:
1. Which of the following is the best method for determining the stability and
transient response?
(A) Root locus (B) Bode plot (C) Nyquist plot (D) None of the above

Answer: Option A

2. Technique gives quick transient and stability response

(A) Root locus  (B) Bode (C) Nyquist (D) Nichols

A snaxxrame MNhantinan A

Note: Check your answers in “Answer Keys” in end of unit. If you obtain 75% of solution,
you cannot need to this unit. If your answer is poor, you will transfer to next page.
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3. Theory:

3.1 Stability
For nonlinear and time-varying systems, the study of stability is a complex and often difficult
subject. In this section, we will consider only LTI systems for which we have the following

condition for stability:

An LTI system is said to be stable if all the roots of the transfer function
denominator polynomial have negative real parts (that is, they are all in the left
hand s-plane) and is unstable otherwise.

A system is stable if its initial conditions decay to zero and is unstable Stable system if they
diverge. As just stated, an LTI (constant parameter) system is stable if all the poles of the system
are strictly inside the left half s-plane [that is, all the poles have negative real parts (s = —c + jo,
o > 0)]. If any pole of the system is in the right half s-plane (that is, has a positive real part,
Unstable system s = —c + jo, o < 0), then the system is unstable, as shown in Fig. 3.. With any
simple pole on the jo axis (¢ = 0), small initial conditions will persist. For any other pole with ¢
= 0, oscillatory motion will persist. Therefore, a system is stable if its transient response decays
and unstable if it does not. Figure 3 shows the time response of a system due to its pole locations.

ATm(s)
Stable Unstable

h | Lhann AN
N ViV ‘
LHP RHP

Re(s)

] B

Fig 3: Time functions associated with points in the s-plane (LHP, left half-plane; RHP, right
half-plane)

65



3.2 Routh’s Stability Criterion

Routh’s stability criterion tells us whether or not there are unstable roots in a polynomial equation
without actually solving for them. This stability criterion applies to polynomials with only a finite
number of terms. When the criterion is applied to a control system, information about absolute
stability can be obtained directly from the coefficients of the characteristic equation. The
procedure in Routh’s stability criterion is as follows:

L. Write the polynomial in 5 in the following form:
Gg8™ + @y L+t s +a, =0

where the coefficients are real quantities. We assume that g, # 0;that is, any zero
rool has been removed.

2. If any of the coefficients are zero or negative in the presence of at least one posi-
tive coeflicient, a root or roots exist that are imaginary or that have positive real
parts Therefore, in such a case, the system is not stable. I we are inlerested in only
the absolute stability, there is no need to follow the procedure further, Note that
all the coefficients must be positive, This is a necessary condition, as may be seen
from the following argument: A polynomial in s having real coefficients can al-
ways be factored into lincar and quadratic factors, such as (s + a) and
(5 + bs + c), where a, b, and ¢ are real. The linear factors yield real roots and
the guadratic factors yield complex-conjugate roots of the polynomial. The factor
(5* + bs + ) vields roots having negative real parts only if b and ¢ are both pos-
itive. For all roots to have negative real parts, the constants a, b, ¢, and so on, in all
factors must be positive. The product of any number of linear and quadratic factors
conlaining only positive coefficients always yields a polynomial with positive
coefficients. It is important to note that the condition that all the coefficients be
positive is not sufficient to assure stability. The necessary but not sufficient
condition for stability is that the coefficients of Equation (5-61) all be present and
all have a positive sign. (If all a's are negative, they can be made positive by
multiplying both sides of the equalion by —1.)
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3. If all coefficients are positive, arrange the coefficients of the polynomial in rows
and columns according (o the following pattern:

5 gy fl; dy 6
5 ay 4d3 ds gy
&E b By b
5 Cp & €3 4
5

3=t dy da ds dy

5 e &
1

Bl h
o

) 4

The process of forming rows continues until we run out of elements. (The total number
of rows is n + 1.) The coefficients by, b;, by, and so on, are evaluated as follows:

fydy — dgds

b=
a,
a8, — gl
iy
b= &8 — fgly
il

The evaluation of the b 1% continued until the remaining ones are all zero. The same
pattern of cross-multiplying the coefficients of the two previous rows is followed in
evaluating the ¢'s, d's, €’s, and =0 on. That is,

byas — a1 b

R
1

T biﬂs s ﬂ1b3

e
b,

bya; — ayby

[']_ = T
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and

EXAMPLE *

EXAMPLE

- eby — e,

e erb; — byes

a1

Let us apply Routh’s stability criterion 1o the following third-order polynomial:
a4 a8t + ays + ay =10

where all the eoefficients are positive numbers. The array of coefficients become

i ag i1y
& iy iy
1 iy = dyily
S e ——— e
i
.i'ﬂ il

The condition that all roots have negative real parts is given by

dyily = dgidy

Consider the following polynomial:

i et S N [ . P S S |

Let us follow the procedure just presented and construct the array of coefficients. (The first
two rows can be obtained directly from the given polynomial. The remaining terms are
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obtained from these. If any coefficients are missing. they may be replaced by zeros in

the arrav.)
. ¥ 3 5 s* r 3 5
Fed 2 4 D i 2 & B The second row is divided
2 by
5 1 5 5 r 5
x! -5 s -
# 5 5" 5

In this example, the number of changes in sign of the coefficients in the first column is 2. This
means that there are two roots with positive real parts Note that the result is unchanged when the
coefficients of any row are multiplied or divided by a positive number in order to simplity the
computation.

Special Cases. [f a first-column term in any row is zero, but the remaining terms
are not zero or there is no remaining term, then the zero term is replaced by a very small
positive number € and the rest of the array is evaluated. For example, consider the
following equation:

S+ 2+ 5 +2=0

The array of coefficients is

5 1 1
5 Z

55 Dre

i 2

If the sign of the coefficient above the zero (€) is the same as that below it, it indicates
that there are a pair of imaginary roots. Actually, Equation (5-62) has two roots at
£=3j.

If, however, the sign of the coefficient above the zero (e) is opposite that below it, it
indicates that there is one sign change. For example, for the equation

PF=42=[{s—1Va+2)=0

the array of coefficients is

5 1 =3
One sign change: 5
sepea 5 0O=e 2
5! —3—%
One sign change: C & "

There are two sign changes of the coefficients in the first column. So there are two rools
in the right-half s plane. This agrees with the correct result indicated by the factored
form of the polynomial equation.

Summary rules of Routh Test

1. A necessary (but not sufficient) condition for stability is that all the coefficients of the
characteristic polynomial be positive.

2. A system is stable if and only if all the elements in the first column

3. of the Routh array are positive.

69



4. Routh array

s 1 @ ag
e oa om oas ...

We then add subsequent rows to complete the Routh array:

Row n gl 1 ax a4
Row n—1 & @ an oas
Row n—2 2% b b b
Row n—3 f f e o,
Row 2 g ® ok
Row 1 sl *®

Row 0 st *®

We compute the elements from the (r — 2)th and (n — 3)th rows as follows:

=5 B
ap 43 apey —as
b|_=— —

ay ajy
det L
ay  as ajdy — as
bz e = - = 3
ay iy
g 1 ag
a4y ag dyig — ay
by =——= = = :
dy ay
-
det
by b2 biay —a b
O] = — = = = 5
! by by
P g
det
e L &1 b3 | bias—aibs
0= 3 = 3 s
det d o
[ by by byay —aby
£ =— — o

by by



Application of Routh's Stability Criterion to Control-System Analysis. Routh's
stability criterion is of limited usefulness in linear control-system analysis, mainly because
it does not suggest how to improve relative stability or how Lo stabilize an unstable
system. It is possible, however, to determine the effects of changing one or two
parameters of a system by examining the values that cause instability. In the following,
we shall consider the problem of determining the stability range of a parameter value.

Consider the system shown in Figure 5-35. Let us determine the range of K for
stability. The closed-loop transfer function is

C(s) K
R(s) s("+s+1)s+2)+K
The characteristic equation is

P Had 3+ K =0

The array of coellicients becomes
4

5 1 K
o 3 0
£ 3

R

r' 4
b2 -2K
5" K

T

Riz) % Cis)
A +e+ 1) (x+2)

For stability, K must be positive, and all coefficients in the first column must be positive.
Therefore,

E}K}{}
g

When K = & the system becomes oscillatory and, mathematically, the oscillation is
sustained at constant amplitude.

Mote that the ranges of design parameters that lead to stability may be determined
by use of Routh’s stability eriterion.

4, Self- Test

1. By using Routh Array check the stability of polynomial eqn.
a(s) =S +48° +38* +283+ S2+4S + 4

Another, more rigorous, way to resolve the ambiguity is to use the Nyquist
stability criterion, the subject of the next section. However, because the
Nyquist criterion is fairly complex, it is important while studying it to bear
in mind the theme of this section, namely, that for most systems a simple
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relationship exists between closed loop stability and the open-loop

frequency response.

3.3 The Nyquist Stability Criterion

The Nyquist stability criterion relates the open-loop frequency response to the number of closed-
loop poles of the system in the RHP. Study of the Nyquist criterion will allow you to determine
stability from the frequency response of a complex system, perhaps with one or more resonances,
where the magnitude curve crosses 1 several times and/or the phase crosses 180° several times.
It is also very useful in dealing with open-loop unstable systems, no minimum-phase systems,
and systems with pure delays (transportation lags).

Consider the transfer function H1 (s) whose poles and zeros are indicated in the s-plane in Fig.
We wish to evaluate H1 for values of s on the clockwise contour C1. (Hence this is called

contour evaluation.)

4 Imix)

Re(x)

(c)

Figure 6.16 Contour evaluations: (a) s-plane plot of poles and zeros of HI(s) and the
contour C1; (b) HI(s) for s on C1; (¢) s-plane plot of poles and zeros of H2(s) and the

tIm[H | (s)]
H]_{ 5}
S
(o4
Re[H,is]]
(b}
+1m[H,(5)]
‘ED Hg{.ﬂ
il:
\ Re[H,(s)]

(d)

contour C1; (d) H2(s) for s on C1
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A contour map of a complex function will encircle the origin Z —P times, where Z is the
number of zeros and P is the number of poles of the function inside the contour.

a =8 + 6 — (¢1 + ¢2).

3.4 Application of The Argument Principle to Control Design

To apply the principle to control design, we let the Cy contour in the s-plane
encircle the entire RHP, the region in the s-plane where a pole would cause
an unstable system (Fig. 6.17). The resulting evaluation of H(s) will encircle
the origin only if H(s) has an RHP pole or zero.

As stated earlier, what makes all this contour behavior useful is that a
contour evaluation of an open-loop KG(s) can be used to determine stability

of the closed-loop system. Specifically, for the system in Fig. 6.18, the
closed-loop transfer function is

Yis) _ T(s) — KG(s) _
R(s) 1 + KG(s)
Figure 6.17 4 Im(s)
An s-plane plot of a = /,f:om_uurat
contour (; that I\ e mfinity
encircles the entire RHP %
\
g, \
] L
IJ Re(s)
)
&
\f;"
1 i
Figure 6.18 5
Block diagram for £ X kGl oY
Y(s)/R(s) = "1
KG(s) /1 + KG(s)]

Therefore, the closed-loop roots are the solutions of

1 +KG(s) =0,
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Procedure for Determining Nyguist Stability

1. Plot KG(s) for —joo < s < + joo. Do this by first evaluating

KG(jw) for @ = 0 to wy, where wy, is so large that the magnitude
of KG(jw) is negligibly small for @ > wy, then reflecting the
image about the real axis and adding it to the preceding image. The
magnitude of KG(jw) will be small at high frequencies for any
physical system. The Nyquist plot will always be symmetric with
respect to the real axis. The plot is normally created by the NYQUIST
Matlab m-file.

. Evaluate the number of clockwise encirclements of —1, and call that
number N. Do this by drawing a straight line in any direction from
—1 to 0o. Then count the net number of left-to-right crossings of the
straight line by KG(s). If encirclements are in the counterclockwise
direction, N is negative.

. Determine the number of unstable (RHP) poles of G{s), and call
that number P.

4. Calculate the number of unstable closed-loop roots Z:

Z=N4+P. (6.28)

For stability we wish to have Z = 0; that is, no characteristic equation roots in the RHP.Let
us now examine a rigorous application of the procedure for determining stability using
Nyquist plots for some examples.

EXAMPLE 6.8 Nyquist Plot for a Second-Order System
Determine the stability properties of the system defined in Fig. 6.20.
Solution. The root locus of the system in Fig. 6.20 is shown in Fig. 6.21.
It shows that the system is stable for all values of K. The magnitude of the
frequency response of KG(s) is plotted in Fig. 6.22(a) for K = 1, and the
phase is plotted in Fig. 6.22(b); this is the typical Bode method of presenting
frequency response and represents the evaluation of G(s) over the interesting

Figure 6.20 Ly :

Control system for - ol AT 2

Example 6.8 i
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Figure 6.21 b Imis)
Root locus of 3k
e Ik x
E{S] = m’ with mE
respect to K Bt 1
locus— | 1
I £ e I I
=i g T 1 2 B
Foot o Ll =
-~
locus |
_2 =
Figure 6.22 t
Open-loop Bode plot for Hhe &
iy 1 ) | I 1] - I
T YET s
<3 CIN,
4 o1 = —20
o |
X
§ 0.0 D —4f} 5
\k
0.001 —6l)
0.1 1 10 100
w {rad/sec)
(a)
A
o° {\
- :
3
= \\
{o
—180° P
0.1 1 10 100
w (radfsec)
(b}

range of frequencies. The same information is replotted in Fig. 6.23 in the Nyquist (polar)
plot form. Note how the points A, B, C, D, and E are mapped from the Bode plot to the
Nyquist plot in Fig. 6.23. The arc from G(s) =+1 (® = 0) to G(s) = 0 (» = o) that lies below
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the real axis is derived from Fig. 6.22. The portion of the C1 arc at infinity from Fig. 6.17
transforms into G(s) = 0 in Fig. 6.23; therefore, a continuous evaluation of

Figure 6.23 + Im|[Gis)]

Nyquist plot® of the e
evaluation of KG(s) for _ /
s=(and Kk =1 0.3 =

w=10
| / "
—05 D A Re[G(s)]
B

—0.5; \ <

c Gis) for s=010 +joo

G(s) with s traversing C1 is completed by simply reflecting the lower arc about the real axis.
This creates the portion of the contour above the real axis and completes the Nyquist (polar)
plot. Because the plot does not encircle —1, N = 0. Also, there are no poles of G(s) in the RHP,
so P =0. From Eq. (6.28), we conclude that Z = 0, which indicates there are no unstable

roots of the closed-loop system for K = 1. Furthermore, different values of K would simply
change the magnitude of the polar plot, but no positive value of K would cause the plot to
encircle —1, because the polar plot will always cross the negative real axis when KG(s) = 0.
Thus the Nyquist stability criterion confirms what the root locus indicated: the closed-loop
system is stable for all K > 0.

The Matlab statements that will produce this Nyquist plot are

s=tf('s');
sysG=1/(s+1)"2;
nyquist{sysG);
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S. Post- Test -
- Determine its stability properties using the Nyq
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Answer Keys

Pre- Test

1. Answer: Option A

2. Answer: Option A

Self-Test
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Routh's Test

The polynomial
alf) =P+ 4”7 +36¥ 4+ 207 P de 44
satisfies the necessary condition for stability since all the {a;} are positive

and nonzero. Determine whether any of the roots of the polynomial are in
the RHE.

Solution. The Routh array for this polynomial is

P 1 3 I 4
o 4 ? 4 0
s 5 4:3-1-2  4.1—4-1 _4-4-1.0
¥ = 4 e 4 = 4
5 5
5+2=4:0 13 s-4—4.4
P 2= = — = 0
5 5 5
2 2
Post- Test
T i3ix)]

N, o]
=00
sl

lam s}

ool

£

=

it Heix]

s

it}
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To draw the Nyquist plot using Matlab, use the following commands:
s=tf('s");
sysG=(s+1)/(s*(s/10-1));

nyguist(sysG)
axis([-33-33])
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1. Overview

a. Target Population: For students of fourth stage for Medical Instrument Department in
Electrical Engineering Technical College

b. Rationale: In studying control systems the reader must be able to model dynamic systems
in mathematical terms and analyze their dynamic characteristics.

c. Central Ideas: In the root locus diagram, we can observe the path of the closed loop
poles. Hence, we can identify the nature of the control system. In this technique, we will
use an open loop transfer function to know the stability of the closed loop control system.

d. Objectives: After completing this lecture, the student will be able to:

The main objective of drawing root locus plot is to obtain a clear picture about the transient
response of feedback system for various values of open loop gain K and to determine sufficient

condition for the value of ‘K’ that will make the feedback system unstable.

2. Pre-Test:

1. Root locus of s(s+2) +K(s+4) =0 is a circle. What are the coordinates of the center of

this circle?
a)-2,0 b) -3,0 ¢)-4,0 d)-5,0
2. Which one of the following statements is not correct?

a) Root loci can be used for analyzing stability and transient performance
b) Root loci provide insight into system stability and performance

c¢) Shape of the root locus gives idea of type of controller needed to meet design
specification

d) Root locus can be used to handle more than one variable at a time
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3. Theory:

3.1 Basic concepts of root locus
In the previous sections, we have studies that the stability of a system. It depends on the
location of the roots of the characteristic equation. We can also say that the stability of
the system depends on the location of closed-loop poles. Such knowledge of the
movement of the poles in the s-plane when the parameters are varied is important. The
minor changes in the parameters can greatly help in the system designing. The nature of
the system's transient response is closely related to the location of the poles in the s-plane.
We have also studied the Routh Hurwitz criteria that describe the stability of the algebraic
equation. If any of the term in the first column of the Roth table possesses a sign change,
the system tends to become unstable.
The root locus method was introduced by W.R Evans in 1948. Root locus is a graphical
method in which the movement of poles in the s-plane can be located when a specific
parameter is varied from O to infinity. The parameter assumed to be varied is generally
the gain of the system.
The equation of a closed loop system is given by:
1 +G(s)H(s)=0
Where: G(s) is the gain of the transfer function H(s) is the feedback gain
In the case of root locus, the gain K is also assumed as part of the closed-loop system. K
is known as system gain or the gain in the forward path. The characteristic equation

after including the forward gain can be represented as:

1 +KG'(s)H(s) =0
Where: G(s) = KG'(s)
When the system includes the variable parameter K, the roots of the closed loop system are now

dependent on the values of 'K.' The value of 'K' variable can vary in two cases, as shown below:

1. -oo to 400
2. 0Dto4oo

In the first case, for every different value (integer or decimal) of K, we will get separate set of
locations of the roots. If all such locations are joined, the resulting plot is defined as the root
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locus. We can also define root locus as the locus of the closed loop poles obtained when the
system gain 'K' is varied from -infinity to infinity.

When the K varies from zero to infinity, the plot is called the direct root locus. If the system gain
'K' varies from -infinity to zero, the plot thus obtained is known as inverse root locus. The gain
K is generally assumed from zero to infinity unless specially stated.

3.2 Root Locus Construction Rules

1.Starting points ( K = 0). The root loci start at the open-loop poles.

2. Termination points ( K = 00). The root loci terminate at the open-loop zeros when they exist,
otherwise at oo

3. Number of distinct root loci (branches): This is equal to the order of the characteristic
equations (or the number of poles of open loop transfer function).

4. Symmetry of root loci: The root loci are symmetric about the real axis.

5. Root locus locations on the real axis: A point on the real axis is part of the loci if the sum of
the open-loop poles and zeros to the right of the point concerned is odd.

6. Break away (in) points. The points at which a locus breaks away from (or break in) the real
axis can be found by letting K as a function of s , taking the derivative of (dK /ds) and then
setting the derivative equal to zero.

7. RHS, crossover: This can be obtained by determining the value of K for marginal stability
Routh-Hurwitz criterion.

Rules for Constructing a Root Locus

Rule 1

The root locus is symmetric with respect to the real axis.

Rule 2
The root locus originates at the poles of G{s)H(x) (for X =0) and terminates at the

zeros of Gls)H (5) (as K — oo ), including zeros at infiniry.

Rule 3

If the open-loop function has @ zeros at infinity, the root locus approaches o
asymptoles as K —b oo . The asymptoies are located at angles

_ rI80F

g= r=%1 3 +5
ar

and intersect the real axis at the point

(=2 only)

s Z{poles}-Z{l’mile zeros) _

Here, & =i —m (zeros al infinity)

where n = number of poles
m = number of finite zeros
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Rule 4

The root locos includes all points on the real axis (o the left of an odd number of poles
andfor finite zeros.

Rule 5
Breakaway points are given by the roots of

afGl)is)]
s

or, equivalently,
Nis)D(s)—D{s)V[s)=0.

Here, N(z) and D(s) are the numerator and denominator polynomials of G{s)H (5]

General Procedure

input cutput
i » K — Gs) >
Prramsser Etlane and
Controdler
Hls)
Semsar

1. Obtain the open-loop function KG{s)H (s).

2. Quantify the number of poles and finite zeros (n and m ) of G(s)H(s) and their
locations. Plot the poles and finite zeros in the complex s-plane. (Denote poles
and zeros by the symbols = and o, respectively.)

3. Quantify the number of Zeros at infinity (same as the number of asymptoles)
USING &= —.

4. Per rule 4, the root locus includes all points on the real axis to the left of an odd
number of poles and finite zeros. Include these poinis in the root locus.

5. If @ =2, quantify the angles of the o asymptote(s) using

P e
(4

Find the point (if it exists) at which the asymptote(s) intersect{s) the real axis
using

— E{pe—ies}-—ziﬁnile zeros) !

o
Sketch the asympioie(s).
6. CQuantify, as appropriate, the breakaway points by calculating the roots’ of

alcta ) _
wls

or NI s ) — =W (s ) =0.

7. Finish sketching the root locos.
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Examples:

Sketch the root loci for the system shown in Figure 6-39(a). (The gain K is assumed to be posi-
tive.) Observe that for small or large values of K the system is overdamped and for medium val-

ues of K it is underdamped.
Solution. The procedure for plotting the root loci is as follows:

1. Locate the open-loop poles and zeros on the complex plane. Root loci exist on the negative
real axis between 0 and —1 and between -2 and 3.

2. The number of open-loop poles and that of finite zeros are the same. This means that there
are no asymptotes in the complex region of the s plane.

Juw
= ‘,"2
K=00718
_.J-]
K=14
4 \ A I |
-3 -2 B | 0 1 o
R(s) +3 Cls)
o e J(S.i'+|_} - _—
- 2
(a) (k)
Figure 6-39

(a) Control system; (b) root-locus plot.
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3. Determine the breakaway and break-in points. The characteristic equation for the system 1s

i i Kis +2)(s + 3)
s(is+1)

or

s(s +1)

K== oG+

The breakaway and break-in points are determined from

dK (2o 415+ 2 (& )08 + 1}(25.+5)

ds [(s + 2)s + 3)f

B 4(s + 0.634)(s + 2.366)
[(s +2)(s + 3)]

as follows:
5 = —{1L634, s ==2366

Notice that both points are on root loci. Therefore, they are actual breakaway or break-in
points. At point 5 = —0.634. the value of K is

87



_ (-0.634)(0.366)
= (1.366)(2.366) g

Similarly, at 3 = —2.366,

(—2.366)(—1.366)
(—0.366)(0.634)

K =

(Because point s = —(.634 lies between two poles, it is a breakaway point, and because point
5 = —2.366 lies between two zeros, it is a break-in point.)

4. Determine a sufficient number of points that satisfy the angle condition. (It can he found
that the root loci involve a circle with center at —1.5 that passes through the breakaway and
break-in points.) The root-locus plot for this system is shown in Figure 6-39(b).

Note that this system is stable for any positive value of K since all the root loci lie in the left-
hait ¥ plane.

Small values of K (0 = K < 0.0718) correspond to an overdamped system. Medium values
of K (00718 = K < 14) correspond to an underdamped svstem. Finally, large values ot
K (14 < K correspond to an overdamped svstem. With a large value of K, the steady state can
be reached in much shorter time than with a small value of K.

The value of K should be adjusted so that svstem performance is optimum according 10 a
given performance index.

Example:

Sketch the root loci of the control system shown in Figure 6-40(a).

Solution. The open-loop poles are locatedats = 0,5 = =3 + j4,and s = =3 — j4. A root locus
branch exists on the real axis between the origin and —oo. There are three asymptotes for the root
loci. The angles of asymptotes are

+180°(2k + 1)

Angles of asymptotes = 3 = 60°, —60°, 180°
Referring to Equation (6-13), the intersection of the asymptotes and the real axis is obtained as
+ 3+
A

Next we check the breakaway and break-in points. For this system we have
K = —s(s* + 65 + 25)
Now we set

=3+ 125+ 25) =0

which yields
s = =2 + j2.0817, 5= =2 — j20817
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K= 150 75
K=pgR 1
ik
K=34 H
_Jj
K=68 K=34 ~Jl
| 1 | \”\l | P | .
7 6 -5 -4 -3 -2 01 &
= =il
- =2
x K-“ —'-IJ
#5? + 65 +25) =
5\44
K=063 =5
N\
6

(2} (&)
Figure 640

{a) Control system; (b) root-locus plot.
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Notice that at points 5 = =2 £ 20817 the angle condition 15 not satisfied. Hence, they are pei-
ther breakaway nor break-in points. In fact, if we calculate the value of K, we obtain

K = —s(s* + 6x + 25) =34 + jI8.04
sm—2 11417

{To be an actual breakaway or break-in point, the corresponding value of K must be real and
puosilive.)

The angle of departure from the complex pole in the upper half s plane is
.= 180" — 126.87° — 907
o
¢ = —36.87°

The points where root-locus branches cross the imaginary axis may be found by substituting
5 = few into the characteristic equation and solving the equation for w and K as follows: Noting
that the characteristic equation is

FHef+ 2+ K=0

we have
(jw)* + 6(jw)? + 25(jw) + K = (—6w’ + K) + jw(25 — «*) =0
which yields g
w = 45 K = 150 or o=, K=0
Root-locus branches eross the imaginary axis at w = 3 and « = —5.The value of gain &£ at the

crossing points is 150. Also, the root-locus branch on the real axis touches the imaginary axis at
w = 0. Figure 6—40(b) shows a root-locus plot for the system.

It is noted that if the order of the numerator of G{s)H{s) is lower than that of the denomi-
nator by two or more, and if some of the closed-loop poles move on the root locus toward the right
as gain K is increased, then other closed-loop poles must move toward the left as gain K is in-
creased. This fact can be seen clearly in this problem. If the gain K is increased from K = 34 to
K = 68, the complex-conjugate closed-loop poles are moved froms = =2 + j365 105 = —] + jik
the third pole is moved from s = -2 {which corresponds to K = 34) to 5 = —4 (which corre-
sponds to K = 68). Thus, the movements of two complex-conjugate closed-loop poles to the right
by one unit cause the remaining closed-loop pole (real pole in this case) to move to the left by two
units,

4. Self- Test

1. Draw the root locus of the control system having open loop transfer function,

G(s)H(s) = s5riers

4.1 Effects of Adding Open Loop Poles and Zeros on Root Locus

The root locus can be shifted in ‘s’ plane by adding the open loop poles and the open loop zeros.If
we include a pole in the open loop transfer function, then some of root locus branches will move
towards right half of ‘s’ plane. Because of this, the damping ratio ¢ decreases. Which implies,
damped frequency od increases and the time domain specifications like delay time td, rise time
tr and peak time tp decrease. But, it effects the system stability.
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If we include a zero in the open loop transfer function, then some of root locus branches will
move towards left half of ‘s’ plane. So, it will increase the control system stability. In this case,
the damping ratio & increases. Which implies, damped frequency wd decreases and the time
domain specifications like delay time td, rise time tr and peak time tp increase.

So, based on the requirement, we can include (add) the open loop poles or zeros to the transfer
function.

4.2 Uses of Root Locus
In addition, in determining the stability of the system, root locus also helps to determine:

Damping ratio

The damping ratio is a dimensionless unit that describes how the system decay affects the
oscillations of the system.

Natural frequency

It is represented by wn. The value of the system gain K at the location of poles helps in computing
the natural frequency and the damping ratio of the system. P, PI, and PID controllers P
(proportional), PI (Proportional Integral), and PID (Proportional Integral Derivative) controllers
can be designed with the help of root locus technique. Here, the input of the system to be
controlled is made proportional to the system gain K.

Lag and lead compensators

The compensators are the additional components in the system added to compensate for deficient
performance. The phase lead compensator helps to shift the root locus towards the left in the
complex s-plane, and it further increases the system's stability. Similarly, lag and lead
compensators can be designed in various ways with the help of the root locus.

Advantages of Root locus

The advantages of root locus are as follows:

We can analyze the absolute stability of the system with the help of a root locus plot.

Using the magnitude and angle conditions, we can find the limiting value of the system gain K
for any point on the root locus.

Enhances system designing with better accuracy.

It helps in analyzing the stability of the system with time delay.

Root locus plots help us determine the gain margin, relative stability, phase margin, and the
system's settling time.

The root locus technique is easy to implement as compared to other techniques in the control
system.

It helps in analyzing the performance of the control system.
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K
ss+ 1) (s +45 +13)
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Answer Keys

Pre- Test

1. Answer: ¢

2. Answer: d

Self-Test

Root Locus Branch Root Locus Branch

"E'

Asymptote with 300%ngle T
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Break away
point=-0.473

- -5

Post- Test
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Solution. The open-loop poles are located ats = 0,s = —1,5 = -2 + jJands = -2 — 3. A rool
locus exists on the real axis between points 5 = 0 and 5 = —1. The angles of the asymptotes are
found as follows:

+180°(2k + 1
Angles of asymplotes = % = 45% =457 135° -135°

The intersection of the asymptotes and the real axis is found from

__0+1 :2+2=_1_25
The breakaway and break-in points are found from dK/ds = 0. Moting that

K=—s(s+ 1"+ 45 + 13} = {5 + 57 + 1757 + 135)
we have

%= ~(4s7 + 1557 + 345 + 13) = 0

from which we get

5 = —0.467, 5==1642 + 2067, 5 =-1642 - j2067
Point s = =0.467 iz on a root locus, Therefore, it is an actual breakaway point. The gain values K
corresponding to points 5 = —1.642 £ j2.067 are complex quantities. Since the gain values are
not real positive, these points are neither breakaway nor break-in points.

The angle of departure from the complex pole in the upper half 5 plane is

8 = 180 — 123.69° — 108.44° — 90°

f = —142.13°

MNext we shall Tind the points where root loci may cross the jo axis, Since the characteristic
equation is
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PESEFITE A 13+ K =0
by substituting £ = fw inta it we obtain
(fw)® + 5(jw)® + 17{jw)® + 13{jw) + K =0
or
(K + o' = 170") + ju(13 - 5u®) =0
from which we obtain
w =t 16125, K = 3744 or w =10, K=
The root-locus branches that extend to the right-half 5 plane cross the imaginary axis at
w = +1.6125. Also, the root-locus branch on the real axis touches the imaginary axis at w = 0. Fig-

ure 6=42{b) shows a sketch of the root loci for the system. Notice that each root-locus branch that
extends to the right half 5 plane crosses its own asymptote.

JSar

K
s+ 1} (5t +ds +13)

(a) @ ()

Figure 642
(a) Control system; (b) root-locus plot.
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1.

a.

&

B =

SN

Overview
Target Population: For students of fourth stage for Medical Instrument Department in

Electrical Engineering Technical College

Rationale: A Control Systems Engineer is responsible for designing, developing, and
implementing solutions that control dynamic systems.

Central Ideas: Control Systems Engineering is the engineering approach taken to
understand how the process can be managed by automation devices and to implement
such into operation.

Objectives: After completing this lecture, the student will be able to:

List the control stability criteria for open loop frequency response.

Identify the gain and phase margins necessary for a stable control system.

Use a Bode plot to determine if a control system is stable or unstable.

Generate Bode plots of control systems they include dead-time delay and determine
system stability

Describe typical 2nd order lag models found in control systems.

Write mathematical formulas for 2nd order lag process models.

Compute the parameters of this process model.
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2. Pre-Test: ,

1. A system has poles at 0.01 Hz, 1 Hz ;

The approximate phase of the system reépo
a)-90°  b)0° ¢)90° d)-180°

In a bode magnitude plot, which one of the following slope

requencies by a 4th order all-pole system?
b) -40 dB/decade  ¢) 40 dB/decade d) 80 dB/deca

in for a system is 40 and gain margin is 6dB. The system

e: Check your answers in “Answe 1
is unit. If your answer is poor, you wi
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3. Theory:
3.1 Bode Plot Stability Criteria

Open loop gain of less than 1 (G<1 or G<odB) at
open loop phase angle of -180 degrees

Open loop gain of exactly 1 (G=1 or G= 0dB) at
open loop phase angle of -180 degrees

Open loop gain of greater than 1 (G>1 or G>0dB)
at open loop phase angle of -180 degrees

3.2 Phase and Gain Margins

Inherent error and inaccuracies require ranges of phase shift and gain to insure
stability.

3.3 Determining Phase and Gain Margins

Define two frequencies: w, gz = frequency of o dB gain
™, 5o — frequency of -180 degree phase shift

Open Loop

Gain

G (9 B- -

Open Loop

Phase
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Procedure:
1) Draw vertical lines through 0 dB on gain and -180 on phase plots.
2) Draw horizontal lines through 0 dB and -180 so that they intersect with the vertical lines.

3.) Draw two more horizontal lines that intersect the -180 line on the gain plot and the 0 dB line

on the phase plot.
=N
- @
3 2
£
odB oo
™ == == =

Gain (dB)

3.4Stability Analysis Using Bode Plots
Bode plot stability analysis is idea for systems with dead-time delay. Delay represented

by phase shift that increases with frequency.

Example: A first order lag process has a dead-time delay of 2 seconds and is controlled
by a proportional controller. The open loop transfer function is:

GH(s) = 40- - e
1+100s

1)Find the magnitude and phase angle of the transfer function at the following frequencies:
w=0.001, 0.01, 0.1 and 1 radian/sec using hand calculations.

2) Use Matlab and construct the Bode plots of the system and then determine the gain and phase
margin of the system
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Solution (1):

Substitute jo=s = GH(jw) =40- ; g
1+100jm

Where 2 G=1forallm
b=-2-(57.6)-@

s 1 1 1 .
For jo=j0.001 [ _ ]=[ : ]= - =0.995/-571
1+10030.001 1+10.1 1.0052571

=1/-0.115

— G=1forall®
e =
¢ =-2-(57.6)-0.001

|GH(j0.001)| =40-0.995-1=39.8
ang[GH(j0.001)]=—-5.71°" + (~0.115") = —5.825°

Solution (2)
For jw=jo.01
. 1 1 1 ;
GH(j0.01) = : =|—|= =0.707£—45
14100j0.01 | |1+71| 1414245
: G=lforall®
g =1/-1.15°
$=-2-(57.6)-0.01
|GH(j0.01)| =40-0.707-1=28.28
ang[GH(j0.01)] = —45" +(-1.15") =—46.15°
For jo=j0.1
GH(j0.1) = b b B b ! —=0.0995/~84.3
1+100j0.1| [1+j10] 10052843
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Solution (3)
For jo=j0.1 cont.
-2j0.1 F{
b

G=1forall g
=17"-11.52
=-2.(57.6)-0.1

|GH(30.1)| = 40-0.0995-1=3.98
ang[GH(j0.1)| =—84.3" + (-11.52") =—95.82°

GH(j1.0)= 1 — | = 1 = 1 =0012-89.4
1+10011 1+4100 | 100£894°

201 | G=lforall®
e =
b=-2-(57.6)1

|GH(j0.1)|=40-0.01:1=0.4 ang|GH(j0.1)]=—89.4" +(~1152") =—204.6"

For jo=j1

=1/-115.2"

Solution (4)

GH(j0.001)_, =20log(39.8)=32dB
GH(j0.01),; = 20log( 28.28) = 29 dB
GH(j0.1),5 = 20log(3.98) =12 dB
GH(jl) 5 = 20log(0.4) = 8.0 dB

Frequency GH

Calculation summary

0.001 39.84-5.83 32/-5.83" dB
0.01 28.28./-46.15" 20/-46.15° dB
01 3.98/-9582°  12/-95.82"dB
1.0 0.4/-204.6° -8 #-204.6" dB
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Solution (5)

Construct an open-loop Bode plot using MatLAB and find the gain and
phase margins for the control system. Example code follows:

clear all;

close all;

numgh=[40]; % define the forward gain numerator and denominator
coefficients

demgh=[1001];

Gh=tf{numgh,demgh); % eonstruct the transfer function

[m p wl=bode(Gh,{o.001,1}); % Use the bode funetion with its arguments so that it returns the
% magnitude, m, the phase shift, p and the frequencies so that
% the effect of the dead time delay can be added to the system
% now compute the values of phase shift for the time delay using
% the formula -2*w*57.6

pd=-2*w*57.6;

Solution (6)

% Add the phase shift of the transfer function to the dead-time delay
% take the phase shift out of the 3 column array [m p wl

phase=p(:);

pt=pd+phase;

db=20_*logio(m); % compute the gain in db

figure; % create a figure window
subplot(2,1,1); % divide the plot area in two paris

semilogx{w,db,'gc-"); %plot gainin dB on a semilog x-axis
xzlabel(Frequency (rad/sec)’); % add labels and title. Turn on the grid.
ylabel('Gain (db)');

title{'Example Bode Plot");

grid on;

subplot(2.1,2); % now do the same for the phase shift plot
semilogx(w,pt,'go-);

xlabel('Frequency (rad/sec));

vlabel("Phase Shift (Degrees)");

arid on

Solution (7)
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40 F
% " Gain
g = 3 Margin
£ -6 dB
A G
“(F
-1?11-“ 10* 1wt
Frequency (rad'sec)
" Phase
7 = Margin
E 100 - f=45
= A Ch -
& s - BRI 180-135 =45
.
Bt 10" 10" 1

4. Self- Test

1. The roots of the characteristic equation of the second order system in which real and
imaginary part represents the:

a) Damped frequency and damping

b) Damping and damped frequency

¢) Natural frequency and damping ratio

d) Damping ratio and natural frequency

2. For relative stability of the system which of the following is sufficient?

A. gain margin B. phase margin C.bothaand b D. magnitude
3. Is a part of the human temperature control system?
(A) Digestive system (B) Perspiration system (C) Ear(D) Leg movement

4. Phase margin of a system is used to specify which of the following?

(A) Frequency response (B) Absolute stability (C) Relative stability (D) Time response
5. Which of the following should be done to make an unstable system stable?

(A) The gain of the system should be decreased

(B) The gain of the system should be increased

(C) The number of poles to the loop transfer function should be increased

(D) The number of zeros to the loop transfer function should be increased
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3.5 Determining Control Stability Using Bode Plots

Example 21-1: Given the forward gain, G(s), and the feedback system
gain, H(s) shown below, find 1) open loop transfer function, 2) closed
loop transfer function, 3) error ratio.

21.8
G(s) = 5
1+0.379-s+0.0063-s
0.356
H(s)=——
1+0.478-s

4) compute the values of the open/closed loop transfer functions when
®=0.1, 1, 10 and 100 rad/sec. 5) compute the value of the error ratio
when ©=0.1, 1, 10 and 100 rad/sec. 6) Use MatLAB to plot the open
and closed loop transfer function responses on the same axis.

1) Open Loop Transfer Function

5 2R 9,368

Expand the denominator

(1 +0.39s4 u.mags”)(J 10, 4795)

(103195 {0.00¢35” 4 2.4 '19340._19|2_s"+3.01x£353
|t Q.85 + 0. 1874¢5* 4 0,003,453

n.7¢1
COHE):| 7o 6754 0. 187465+ O, 03 (s3
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GENE) Qe
T4 GGs) NES) 7 146.85% 4G PH6S 10 +7,76]

FESF ETF ETFEST ETFET AL EFES ESESIESESE

CEAS) . 7.261 =
[+ GEYHE) 8.96|+0.850s ¢ 0, 9%Ls>10.0430/<
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G(‘}fﬂ)\ ==0, 55&-—5.[5&.& = O.Zéﬁﬁ;ﬁh

b.386 -4 -3

H ()= 0.356 g R - = | Stxe 2744%1%

(‘}{ ) 1-&0.4‘!’?&{@ l+‘1'?-*€s‘qr J'
H (E!m)*« ’?.ﬁc.n;'g,«_’*@?.a"

Cepm)R =) = (0-3 f-148.4#) (2 44¢ 053/-884) ':i PURBERS fea g ]

Convert all gain values into dB

iG] o Loﬁ(v.*rqe)z (2.28dE ~49(° Phase
o] Zoloeg (Gs98)= 1¢.37dB ~qu.40 Phase,

=1a 20Llog (@98)= "1.59dR - 167,5° Phase
ozl 20 Loy (0.00223) = -§3 04R  127.¢° Phese

4) Compute the close loop response using the previously calculated values of
G(s)H(s)

_GG HE) L) Hig)
be—ﬂnc Guc(gﬁ': /4 G@»H@) C‘mci GH{:CJU-DE HG(UEW)H%(W)

¥

..}{;J:O-l‘a_ G(&okh H(FH): 7.4 /-43:°)
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-‘{w:fﬁﬁ_ GC&I&)HCIJQ)TJ 0,418 /~162.58°

GH (Ef"“}' 0.918 L1case
[ +0.418 [162.82°

GHQ(JM) :{B.CQJ Zﬂlgﬁ-g"l

poetely,  Glgmhiye)s fuses Ji22.80

0.00 223 (12187
GRo({1®)*  Tiocuafass

GHq(.(fI GD)“: ﬁa@

Convert all gain values into dB
25 og (GRG0 1) = 2oLy (0.88¢) = ~1.061 dg -0.56° Phase
o L.j (G&( I')}'“ 2o Loj Cﬁﬁdl\] - =3yl dR -5.49° Phase
2aLe5 (S H;,(I_.'nﬂ= 2olry (o col)= ~3.36 4R ~150%° Phase
Zs Luj (’GH((};m})S Zﬂl':.sj (0;06233) - -s3 4B + 218’ Phasg

5) Compute the values of the error ratio

[

Use open loop values to compute
values of ER at given frequencies

ER= (pmcs)n@][z-(;csw(s)]
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At o fo. 1 G(Tw\”(t"“) = .79 /-9
[ )

4 '_"(H ‘?342&:9) ({-7.74¢ £49p)

£~ { %,afb'zéi-J =-Eﬂ

Now for =1 rad/sec

G(\&NBH (?WB = ¢ .899 [96.48°

S
£R® I(: + L0909 99) (1-6 /% 45)
v TEE T :
43.9) /&3

For =10 rad/sec G(E@H(T“’}ga'mng 122,87

B S — _
R J(u u.u:m@.s“)o—a.mmi@) EQHKTIQ,EJ ? D
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ﬂlla*ﬂm values into dB 1 \W\
x '&“:To'i 20( (a ap)=-85.4d8
//'/f:’, ..d_l.ua-‘{l v L (ﬁ 0'23] = -3%, 9 CLE
/f Huﬁ?la VA Laj (MS"'J) z 1,28 dB
/ -flm Z.ﬁ Lﬂj(f)- ﬁdE

Zone 3: ER-=0dB no

e TCIT" :
thm control. Controller does
zone 1
1
¢Ocln)

Zone 2: ER> 0 dB poor !
folimit control. Corntroller

INcreases errof

1

I Zone 1: ER< O dEl

control. Con qull-—'l
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1l . % Example bode calculations
-/./Jl.}r.,’ i’ clear all;
o dosean -
,", / I/ / 1717 % define the forward gain numerator and denominator coefficients
. numg=218}
. demg=[0.0063 0.379 1}

| % define the feadback path g2in numerator and denominators
 numh=[0.3586];

demh=[0.478 1];

9 construct the transfer functions
G=tf{numg.demg);

H=tf(numh,demh);

% find GH(s)

| GH=G*H

% find the closed loop transfer function
GHc=GH/(1+GH)

B Thie value in curly brackets are freq. limits
bﬂdﬂfﬁﬂr'g‘n"-ﬁﬂcfi’:-{q;iuimﬂ

EXAWPLE21L

EEERERLY
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m F&p PQRF LHB I-IH('\H’ l-.l'ﬁ! ka
% Example Error Ratio calcuiations
clear all;
close all;
i1y % define the forward gain numeérator and denominator coefficients
. numg=[218]
. demg=[0.0063 0.379 1J;
i1/ % define the feedback path gain numeratar and denominators

? - numh=[0.356];
demh=[0.478 1I;

25 construct the transfer functions
G-;if{numgpﬁ'ng];
H=tfinumh,demhj;
%5 find GHis)
GH=G*H;
3% find the error ratio
m—ifﬂl*ﬁm*li"ﬁﬁl]
[mag, phase, W]=bode(ER, {0.1,100}); %ise bode plot with output sent to arrays
N=lengthimag); %Find the length of the amay
gain=mag(1,1:N}); - SsExtract the magnitude from the mag array
-db=20.*log10(gain); % compute the gain in dB and plot on & semilog plot
semilogx(W,db);
gridon; %Turn on the plot grid and label the axis
xlabel('Frequency (rad/s));
-H.ﬂbElf_Ermr'BHﬁb-[fﬂ%]ff:
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ERROR RATIO PLOT oy

5
ﬂk Stable /6.5 rad/s 411( |
) G I |

_1u Jil : |
Zone|1 / Zpne 2
. Trror

-15 :
/ Increases

L1e)

Emor Ratia (dB)

5 /
7

10" s f 11110 10°
Frequency (rad/s)

2.4 Second-Order Lag Processes

Characteristics: Two energy storage elements
System response determined by three
parameters: steady-state gain-G, damping
ratio ¢, and resonant frequency, o,

Examples: 2 capacitances,

1 mass and 1 spring
1 capacitance and 1 inductance
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3.6 General Second Order Lag Process Equations
dy

ﬂ-ﬂﬁ\ —+y=G-x
A g

A,-

Y(s) G
X(s) 1+A,-s+A,-s’

X6) = L o A= l: ‘_\*}::.”;
Y(s){mf G
X(s) M_IJ{%]_H[?I{],SZ_

; 2
Y(s) G o,
Characteristic Equation: X(s) mﬂz +2-C-0,-5+s°
Roots determine system
response
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3.7 Second Order System Responses

Jw

w,C=0

This controls

the exponential
rise and decay

Find roots to characteristic equation

) . () 3
1] =

G ) PR ol
S, ==L ;-1

Plot these roots on complex plane
/
/
BNk
- I Ztun, =

Ls™ =0
@y AJC2—1=0
(1) -1’;-—1::'

1% Two poles at these
y P S Y

When 0<{<1 above
equation determines
conditional frequency-
a damped sinusoid

. locations
As poles near
1maginary axis
system become
more
oscillatory

If (=0,
damping is zero
and system will
oscillate at

M=,
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Roots of quadratic formula can have three possible forms
1) real - distinct
2) real - identical
3) imaginary - conjugate pairs

J®
Location of roots is controlled
by the values of  and ®,.

W a & G If natural frequency is constant
them damping controls system
response

He

Damping coefficient value and system responses

€ =1 - critically damped system. Reaches the final value the
fastest without having any overshoot. Roots are equal and real.

Slep Response

Time response

Final value in
approx. 1.4

Ampliude

seconds No
Overshoot.

1 15 2 25 3
Time {sec.)
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Second Order System Responses-Critically

Damped
Bode plot of Critically damped system

Bode Dlgrams

Two poles
at this point

-3 dB from
max. gain

PhEme OO MEne Becke @iy

Response
similar to
lag process

Frequensy [ragfaee)

Second Order Response-Over Damped

System

€ >1 - over damped system. Reaches the final value slowly but
with no overshoot. More damping, slower response to final value.

Roots are real but not equal.

Step Response

Ampiude
(=1 o L= [ =] (=] (=] =] = [ =]
T

6.5 sec Apyroxﬁﬁ set:tn
l | get to final value vs

1/\14%:
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Over Damped System Frequency Response

Bode plot of Over damped system

Phame eg) Mage Eicke @E)

Pole at this
point -3 dB
Bode Diagrams from max.
gain

Second

Pole at

higher
frequency

Freooencay (ragiseal

Under Damped System Frequency Response

Bode plot of under damped system

Phase (deg);, Magnitude (dB)

Resonant
Bode Diagrams Peak at 5
_ rad/sec

frequency of system

......

el 00 degree phase
SERSSEN Lift at resonant
frequency

10" 10°

Frequency (Fadisec)
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Second Order Response-Under Damped
System

£ <1 -under damped system . Reaches the final value fast but
with overshoot. Less damping more overshoot. Roots are
conjugate pairs.

Armplitude

Time {=ac.)
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3.8 Compensation Techniques

* Performance specifications for the closed-loop system

* Stability

* Transient response: Ts, Ms (settling time, overshoot) or phase and gain margins
* Steady-state response: ess (steady state error)

* Trial and error approach to design

Performance specifications
Root-locus or : -
Fr ey Synthest
Tesponse
techniques

Analysis of closed-loop system

Are specifications
met?
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