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a.

. Overview

Target Population: For students of fourth stage for Medical Instrument Department in
Electrical Engineering Technical College

Rationale: A Control Systems Engineer is responsible for designing, developing, and
implementing solutions that control dynamic systems.

Central Ideas: Control Systems Engineering is the engineering approach taken to
understand how the process can be managed by automation devices and to implement
such into operation.

Objectives: After completing this lecture, the student will be able to:
Define a control system and describe some applications.

Describe historical developments leading to modern day control theory

Describe the basic features and configurations of control systems
Describe control systems analysis and design objectives
Describe a control system’s design process

Describe the benefit from studying control systems

2. Pre-Test:

1. What is control system?

2. What are the various types of ‘control system’?

3. The key elements of a control process include a characteristic to be tested,
sensors, comparative standards, and implementation. State True or false

4. Feedback control systems are referred to as closed loop systems. State True or
false.

5. What is the effect of feedback in the overall gain of the system?

a) increases b) decreases c) zero d) no change

Note: Check your answers in “Answer Keys” in end of unit. If you obtain 75% of solution,
you cannot need to this unit. If your answer is poor, you will transfer to next page.




3. Theory:

3.1 Introduction:

Control systems are an integral part of modern society. Numerous applications are
all around us: The rockets fire, and the space shuttle lifts off to earth orbit; in
splashing cooling water, a metallic part is automatically machined; a self-guided
vehicle delivering material to workstations in an aerospace assembly plant glides
along the floor seeking its destination. These are just a few examples of the
automatically controlled systems that can create.
the only creators of  automatically controlled systems; these  systems
also exist in nature. Within our own bodies are numerous control systems, such as the
pancreas, which regulates our blood sugar. In time of ‘‘fight or flight,”” our adrenaline
increases along with our heart rate, causing more oxygen to be delivered to our cells.
Our eyes follow a moving object to keep it in view; our hands grasp the object and
place it precisely at a predetermined location. Even the nonphysical world appears to be
automatically regulated. Models have been suggested showing automatic control of student
performance. The input to the model is the student’s available study time, and the output is the
grade. The model can be used to predict the time required for the grade to rise if a sudden
increase in study time is available. Using this model, you can determine whether

increased study is worth the effort during the last week of the term.

3.2 Control System Definition

A control system consists of subsystems and processes (or plants) assembled for the
purpose of obtaining a desired output with desired performance, given a specified
input. Figure 1.1 shows a control system in its simplest form, where the
input represents a desired output.
For  example, consider an elevator. When the fourth-floor button is
pressed on the first floor, the elevator rises to the fourth floor with a
speed and floor-leveling accuracy designed for passenger comfort. The
push of the fourth-floor button is an input that represents our desired
output, shown as a step function in Figure 1.2. The performance of the elevator can be
seen from the elevator response curve in the figure.
Two major measures of performance are apparent: (1) the transient response
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and (2) the steady-state error. In our example, passenger comfort and passenger
patience are dependent upon the transient response. If this response is too fast,
passenger comfort is sacrificed; if too slow, passenger patience is sacrificed. The
steady-state error is another important performance specification since passenger
safety and convenience would be sacrificed if the elevator did not properly level.

Input; stimulus Contriol Output; response
= -

Desired response system Actual response

FIG. 1: Simplified description of a control system.
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FIG. 2: Elevator response.

3.2 Advantages of Control Systems

With control systems we can move large equipment with precision that
would  otherwise be impossible. We can point huge antennas toward
the farthest reaches of the universe to pick up faint radio signals;
controlling  these antennas by hand would be impossible. Because of
control systems, elevators carry us quickly to our destination, automatically stopping at the right
floor.

We alone could not provide the power required for the load and the speed; motors provide the
power, and control systems regulate the position and speed. We build control systems for four
primary reasons:

1. Power amplification

2. Remote control

3. Convenience of input form

4. Compensation for disturbances

For example, a radar antenna, positioned by the low-power rotation

of a knob at the input, requires a large amount of power for its output rotation. A control system
can produce the needed power amplification, or power gain.



3.3 A History of Control Systems
1. Liquid-Level Control

The Greeks began engineering feedback systems around 300 B.C. Awater clock invented
by Ktesibios operated by having water trickle into a measuring container at a constant
rate. The level of water in the measuring container could be used to tell time

2. Steam Pressure and Temperature Controls
Regulation of steam pressure began around1681with Denis Papin’s invention of the safety

valve. The concept was further elaborated on by weighting the valve top. If the upward pressure
from the boiler exceeded the weight, steam was released, and the pressure decreased. If it did not
exceed the weight, the valve did not open, and the pressure inside the boiler increased.

3. Speed Control

In 1745, speed control was applied to a windmill by Edmund Lee. Increasing winds
pitched the blades farther back, so that less area was available decreased, more blade area
was available. William Cubitt improved on the idea in 1809 by dividing the windmill sail
into movable louvers.

4. Camera laser system for medical purpose as shown in Figure 3
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FIG. 3: Camera laser system for medical purpose



4.4 Definitions:

Processes. The Merriam—Webster Dictionary defines a process to be a natural, pro-
gressively continuing operation or development marked by a series of gradual changes
that succeed one another in a relatively fixed way and lead toward a particular result or
end; or an artifical or voluntary, progressively continuing operation that consists of a se-
ries of controlled actions or movements systematically directed toward a particular re-
sult or end. In this book we shall call any operation to be controlled a process. Examples
are chemical, economic, and biological processes.

Systems. A system is a combination of components that act together and perform
a certain objective. A system is not limited to physical ones. The concept of the system
can be applied to abstract, dynamic phenomena such as those encountered in econom-
ics. The word system should, therefore, be interpreted to imply physical, biological, eco-
nomic, and the like, systems.

Disturbances. A disturbance is a signal that tends to adversely affect the value of
the output of a system. If a disturbance is generated within the system, it is called inter-
nal, while an external disturbance is generated outside the system and is an input.

Feedback Control. Feedback control refers to an operation that, in the presence
of disturbances, tends to reduce the difference between the output of a system and some
reference input and that does so on the basis of this difference. Here only unpredictable
disturbances are so specified, since predictable or known disturbances can always be
compensated for within the system.

4.5 Closed-Loop Control Versus Open-Loop Control:

Closed-Loop Control Systems. Feedback control systems are often referred to
as closed-loop control systems. In practice, the terms feedback control and closed-loop
control are used interchangeably. In a closed-loop control system the actuating error
signal, which is the difference between the input signal and the feedback signal (which
may be the output signal itself or a function of the output signal and its derivatives
and/or integrals), is fed to the controller so as to reduce the error and bring the output
of the system to a desired value. The term closed-loop control always implies the use of
feedback control action in order to reduce system erTor.

Open-Loop Control Systems. Those systems in which the output has no effect
on the control action are called open-loop control systems. In other words, in an open loop control
system the output is neither measured nor fed back for comparison with the
input. One practical example is a washing machine. Soaking, washing, and rinsing in the



washer operate on a time basis. The machine does not measure the output signal, that
is, the cleanliness of the clothes, as shown in Figure 4

Open Loop Control System

[ 082?{0' }—»‘ Driver

Closed Loop Control System

Control :
[ Unit ]_> Driver
L Feedback

- —

FIG. 4: Simplified block diagram description of open and closed loop control system.

4. Self- Test

1. State the application of control system I medical instrumentation?
2. Compare between open and closed loop system?

4.6 Feedback System Fundamentals

To achieve good control there are typical goals:

* Stability: The system must be stable at all times. This is an absolute requirement.

* Tracking: The system output must track the command reference signal as closely as possible.

* Disturbance rejection: The system output must be as insensitive as possible to disturbance
inputs.

* Robustness: The aforementioned goals must be met even if the model used in the design is not
completely accurate or if the dynamics of the physical system change over time.

S. Post- Test

1. Define all signal in control system.
2. Controlling is last element of elements of control system. State True or False

3. Draw open and closed loop system?




Answer Keys

Pre- Test

1. Control System is a system in which the output is controlled by varying the input.
2. Control System including:

Casual systems.

Linear Time invariant systems.

Time variant systems.

Non-linear systems.

3. True.

4. True

5. b. decreases
explanation: -the feedback reduces the overall gain of the system. as soon as we introduce
feedback in the system to make the system stable, gain is reduced.

Self-Test
1. see sec. 3.3 and give more examples.
2. See sec. 4.5.
Post- Test
1. Seesec.4.4
2. False.
3. See Fig.4.
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1. Overview

a. Target Population: For students of fourth stage for Medical Instrument Department in
Electrical Engineering Technical College

b. Rationale: In studying control systems the reader must be able to model dynamic systems
in mathematical terms and analyze their dynamic characteristics.

c. Central Ideas: A mathematical model of a dynamic system is defined as a set of
equations that represents the dynamics of the system accurately, or at least fairly well.

d. Objectives: After completing this lecture, the student will be able to:

1. Explain how the Laplace transform relates to the transient and sinusoidal responses

of a system.
2. Convert time functions into the Laplace domain.
3. Use Laplace transforms to convert differential equations into algebraic equations.
4. Take the Inverse Laplace transform and find the time response of a system.
5. Use Initial and Final Value Theorems to find the steady state response of a system
2. Pre-Test:

1. What is the mathematical model of control system?
2. A linear system at rest is subject to an input signal r(t)=1-e-t. The response of the

system for t>0 is given by c(t)=1-e-2t. The transfer function of the system is?

A. (s+2)/(s+1)  B. (s+1)/(s+2) C. 2(s+1)/(s+2) D. (s+1)/2(s+2)

Note: Check your answers in “Answer Keys” in end of unit. If you obtain 75% of solution,
you cannot need to this unit. If your answer is poor, you will transfer to next page.
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3. Theory:

3.1

3.2

33

Introduction: Mathematical Models. Mathematical models may assume many
different forms. Depending on the particular system and the particular circumstances,
one mathematical model may be better suited than other models. For example, in
optimal control problems, it is advantageous to use state-space representations. On
the other hand, for the transient-response or frequency-response analysis of single-
input, single-output, linear, time-invariant systems, the transfer-function
representation may be more convenient than any other. Once a mathematical model
of'a system is obtained, various analytical and computer tools can be used for analysis
and synthesis purposes.

Linear Time-Invariant Systems and Linear Time-Varying Systems.

A differential equation is linear if the coefficients are constants or functions only of
the independent variable. Dynamic systems that are composed of linear time-invariant
lumped-parameter components may be described by linear time-invariant differential
equations—that is, constant-coefficient differential equations. Such systems are called
linear time-invariant (or linear constant-coefficient) systems. Systems that are
represented by differential equations whose coefficients are functions of time are
called linear time-varying systems. An example of a time-varying control system is a
spacecraft control system. (The mass of a spacecraft changes due to fuel

consumption.)

Transfer Function. The transfer function of a linear, time-invariant

Differential equation system is defined as the ratio of the Laplace transform of the
output (response function) to the Laplace transform of the input (driving function)
under the assumption that all initial conditions are zero. Consider the linear time-

invariant system defined by the following differential equation:

13
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where yis the output of the system and v is the input, The transfer function of this sys-
tem is the ratio of the Laplace transformed output to the Laplace transformed input
when all initial conditions are zero, or

¥* tput
Transfer function = G(s) = M

E’[IIJ-PUI-] era imitial conditions
_¥(s) B+ bs™ 4+ o+ b s+ by,
2 Xi(s) gz dys” + a5 ot a8+ a,

3.4 The Laplace Transform: Basic Definitions and Results

The given \hard" problem is transformed into a \simple" equation.

This simple equation is solved by purely algebraic manipulations.

The solution of the simple equation is transformed back to obtain the solution of the given
problem.

In this way the Laplace transformation reduces the problem of solving a differential
equation to an algebraic problem. The third step is made easier by
tables, whose role is similar to that of integral tables in integration.

The above procedure can be summarized by Figure 4.1

DE to be Determing Solve Datermine Solution
solved | pllaplace  |—mAlgebraic  —a{inverse —™to the DE
Transform Equation Transform

Figure 4.1: Laplace Method.

In this section we introduce the concept of Laplace transform and discuss
some of its properties.

The Laplace transform is defined in the following way. Let f(t) be defined
for + = 0. Then the Laplace transform of f, which is denoted by L[f(t}]
or by F(s), is defined by the following equation

T %
L[f(t)] = F(s) = lim fu flt)e™dt = i f(t)e*dt

T—oo
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Example 3.1

Find the Laplace transform, if it exists, of each of the following functions
@fy=et MfO=1 (@f)=t (d)f(t)=e"

(a) Using the definition of Laplace transform we see that

oo T
-E[Eﬂt] ey f E—(S—B}id't — lim E_la_ﬂ}'!dt.
]

T'2oa Jg
But 5
T ifs=a
—{a—a}tdi B {
£ i —={gma)T :
‘/4; ——— ifs#a
For the improper integral to converge we need s > a. In this case,
1
Lle™] = F(s) = ; §>a.
€] = Fi(s) = ——.

(b) In a similar way to what was done in part (a), we find

o T 1
L[1] =f edt=lim | e™dt=-, 5> 0.
0

T—=oo f 5

() We have

=§~‘;}ﬂ

.= + —at ,_Bt o
L[t] = / o = ]
40

= 3
s & |,

(d) Again using the definition of Laplace transform we find

Ll = / et =st iy
o

If s < 0 then t?—st > 0 so that €~ > 1 and this implies that [ et —*!df >
Jo . Since the integral on the right is divergent, by the comparison theorem

of improper integrals (see Theorem 43.1 below) the integral on the left is also
divereent. Now. if s > 0 then [T e*=5}dt > [~ dt. Bv the same reasoning

Example 3.2

Show that any bounded function f(t) for t > 0 is exponentially bounded.

Solution. Since f(t) is bounded for t > 0; there is a positive constant M such that

flt) < M for all t > 0: But this is the same as (1) with a = 0 and C = O:
Thus, f(t) has is exponentially bounded Another question that comes to mind is whether it is
possible to relax the condition of continuity on the function f(t): Let’s look at the following
situation.

15



(a) f(t) =t (b) f({)=1t"sinat

Solution.

(a) Smee et =3 fﬂ_—u' = :I—ﬂr we have " < nle'. Hence, 1" is piecewise con-
tinuous and exponentially bounded.

(b) Since |t" sinaf| < nle', we have {"sinat is piecewise continnous and ex-

ponentially bounded B

Next, we would like to establish the existence of the Laplace transform for
all functions that are piecewise contimmous and have exponential order at

infinity. For that purpose we need the following comparison theorem from
calculus.

3.5 The Inverse Laplace Transform

Let f(t) and g(t) be two elements in ‘PE with Laplace transforms F(s) and
G(s) such that F(s) = G(s) for some s > a. Then f(t) = g(t) for all > 0

where both functions are continuous.

The standard techniques used to prove this theorem( i.e., complex analysis,
residue computations, and/or Fourier's integral inversion theorem) are gen-
erally beyond the scope of an introductory differential equations course. The
interested reader can find a proof in the book "Operational Mathematics™
by Ruel Vance Churchill or in D.V. Widder "The Laplace Transform”.
With the above theorem, we can now officially define the inverse Laplace
transform as follows: For a piecewise continuous function f of exponential
order at infinity whose Laplace transform is F, we call f the inverse Laplace
transform of F and write f = £7'[F(s)]. Symbolically

F(t) = LT[F(s)] = F(s) = L[f(®)].

Example 3.3
Find £ (%), 551

Solution.
From Example 43.1(a), we have that L[e*] = L s > a. In particular, for

£—il

a =1 we find that L[e'] = =5, 5> 1. Hence, L7 (=5) =€, t > 0N

The above theorem states that if f(#) is continuous and has a Laplace trans-
form F(s), then there is no other function that has the same Laplace trans-
form. To find £L7'[F(s)], we can inspect tables of Laplace transforms of
known functions to find a particular f(t) that yields the given F(s).

When the fimction f(#) is not continuous, the uniqueness of the inverse

16



Table 1: Laplace Transformation

Item no. D F(s)
1. o(t) 1
2 1
: uft) =
5
1
3. fult £
g -3
4, "u(t) i
41
5 e "u(t) 1
s+
6. sin wiu(r) e
5 4+ aw?
i COS il (1) o
52+ a?

3.5 Properties of Laplace Transform

Property 8.1 (Linearity). If 2£{ f(x)) = F(s) and Z£{g(x)) = G(s), then
for any two constants ¢, and c,

Ll flx) +c,8(x)) = ¢, E{f(x)) + e, L {g(x)}
=¢,F(5) + c,G(3)
Property 8.2. If £{ f(x)} = F(s), then for any constant a
ZL{e“f(x)} = F(s —a)

Property 8.3. It :£{ f(x)} = F(s), then for any positive integer n

n

Fix" f(x)}=(-1)" d

2o L))

17



3.6

f(x)

X

exists, then

Property 8.4. If £{ ()} = F(s) and if lim

x=0
.srz{l f(x)} = [ Fyar
X =
Property 8.5. If £{ f(x)} = F(s), then

¥ j £dt s =1 F(s)
0 5

Property 8.6. If f(x) is periodic with period @, that is, f(x + @) =f(x), then

je‘” F(x)dx
E{f(x)}= 01—_M

Manipulating Denominators

The method of completing the square converts a quadratic polynomial
into the sum of squares, a form that appears in many of the denominators
in the Appendix. In particular, for the quadratic

2 » b
as” +bhs+c =a[3 +—5J+-:'

a
=+£H[£T M.
a 2a da

AN b*
= ﬂ(.'i +E] +(C—E]

=a(s+ k) +1°

where k=b/2aand h= «,||If—{b2 f4a).

The method of partial fractions transforms a function of the form
al =)/ b5, where both als) and Bz} are polynomials in s, into the sum of
other fractions such that the denominator of each new fraction is either a
first-degree or a quadratic polynomial raised to some power. The method
requires only that the degree of a{s) be less than the degree of b(s) (if this
is not the case, first perform long division, and consider the remainder
term) and b(s) be factored into the product of distinet linear and quadrat-
ic polynomials raised to various powers.

The method is carried o as follows. To each factor of B(s) of the
form (5 — a)™, assign a sum of m fractions, of the form

AI =+ ..4.2 2+.-.+A—1ﬂ'm
s—a (5—a) (s —a)

Il
=
5

18



To each factor of b(s) of the form (s* + bs + ¢)*, assign a sum of p frac-
tions, of the form

B+ Bys+0y Bs+C,

1 Y Sl

$Skbs+c (5 +bs+e) (s°+bs+e)l

4. Self- Test
1. Find £ e®*

. -1 S+3
o T {—(S_z)(s+1)}

3.7 Laplace Transform Derivative

Denote ${y(x)} by ¥(s). Then under very broad conditions, the Laplace

transform of the nth-derivative (n=1,2,3,...) of y(x) is

Ef{d—ny}: s“Y(s)-s""y(O)-s”"zy’(O)- , * NOtel

' ] 0)- (n-1) 0) | . ! ‘
i Laplace tansfoms conver dierential equatons

[f the initial conditions on y(x) at x = 0 are given by Into algebralc quations.

10)= ¢y 0)=¢00.)" 0)=c,.,

Example 3.4:  Solve y'—5y= gjx; y(0)=0.

19



Taking the Laplace transform of both sides of this differential equation
and using Property 8.1, we find that £{y"}-5Z£{y}= ${e**}. Then, us-
ing the Appendix and Equation 9.4 with ¢, =0, we obtain

1
(s-35)°
Finally, taking the inverse Laplace transform of ¥(s), we obtain

[5¥(5) - 0] 3¥(5) = —— from which ¥(s)=

— p-l — -l 1 _ iy
Y=L (¥(s)) = & {(5_5)2}_,,;3

5. Post- Test Y +z4+y=0

1. Solve the system. S |
y(0=0, y(@)=0 z0)=1

2. Transfer function of a system is used to calculate which of the following ?
(a) The order of the system

(b) The time constant

(c) The output for any given input
(d) The steady state gain

20



Answer Keys

Pre- Test

1. Mathematical Models. Mathematical models may assume many different forms.
Depending on the particular system and the particular circumstances, one mathematical
model may be better suited than other models. For example, in optimal control problems,
it is advantageous to use state-space representations.

2. C2(st1)/(st2)

explanation: -c(t)=1-e-2t r(s)=1/s-1/s+1

Self-Test
1.
sa R
F(s)= [e™e™dx = lim [e* " dx
0 R—)mD
. e{a—s}x x=R ' e(a—x}R _1
= lim | —— = lim | —————
Roel g—s8 |~ Ro= a—s
x=0
= : (fors > a)
S—a
2.

To the linear factors s — 2 and s + 1, we associate respectively the
fractions A/(s — 2) and B/(s + 1). We set

s+3 A e B
—2)(s+1) s—2 s5+1

and, upon clearing fractions, obtain

s+3=A(s+1)+B(s-2)

To find A and B, we substitute 5 =—1 and 5 = 2 into 8.11, we immediate-
ly obtain A = 5/3 and B = —2/3. Thus,
5+3 5% 213

P e ) o e
(s—2)s+1) 3 s—2 3 s+1




Post- Test

Denote £{y(x)} and £{z(x)} by Y(s) and Z(s) respectively. Then,

taking the Laplace transforms of both differential equations, we obtain

[s2Y($)—(0)s —(0)]+ Z(s)+ ¥(5)=0
[s7(5)—1]+[s¥(s)—0]=0

(5% + )Y ($)+ Z(s)=0

Y(5)+ 7(s) = L
h)

Solving this last system for ¥(s) and Z(s), we find that

1 11
Y(s)=—— Z(s)=—+—
by £ 5

Thus, taking inverse transforms, we conclude that

3 ] * 1 2z
X)=——Xx x)=1+—x
¥x)==2x" zx) 5

2. Ans. C
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1. Overview
a. Target Population: For students of fourth stage for Medical Instrument Department in

Electrical Engineering Technical College
b. Rationale: A Control Systems Engineer is responsible for designing, developing, and
implementing solutions that control dynamic systems.
c. Central Ideas: Control Systems Engineering is the engineering approach taken to
understand how the process can be managed by automation devices and to implement
such into operation.
Objectives: After completing this lecture, the student will be able to:
Define a block diagram and describe some applications.
It represents the structure of a control system.

It helps to organize the variables and equations representing the control system.

S

find a transfer function of a linear system show how some linear systems may be
combined together by combining appropriate transfer functions

5. obtain the impulse response and the general response to a linear engineering system

2. Pre-Test:
1. When deriving the transfer function of a linear element?

A. both initial conditions and loading are taken into account
B. initial conditions are taken into account but the element is assumed to be
not loaded
C. initial conditions are assumed to be zero but loading is taken into account
D. initial conditions are assumed to be zero and the element is assumed to
be not loaded.

2. signal flow graph is the graphical representation of the relationships between the
variables of set linear algebraic equations.
A.True B. False

Note: Check your answers in “Answer Keys” in end of unit. If you obtain 75% of solution,
you cannot need to this unit. If your answer is poor, you will transfer to next page.
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1. Theory:
3.1 Introduction:

In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace
transform model of a linear engineering system. (A linear engineering system is one modelled by
a constant coefficient ordinary differential equation.)

Linear engineering systems are those that can be modelled by linear differential equations. We
shall only consider those systems that can be modelled by constant coefficient ordinary
differential equations. Consider a system modelled by the second order differential equation.

d*y dy
— +b—4ey=fit
a—g +b— ey = f(t)

in which a, b, ¢ are given constants and f(t) is a given function. In this context f(t) is often called
the input signal or forcing function and the solution y(t) is often called the output signal.

We shall assume that the initial conditions are zero (in this case y(0) = 0, y'(0) = 0).

Now, taking the Laplace transform of the differential equation, gives:

(as® +bs+ )Y (s) = F(s)
in which we have used y(0) = y/(0) = 0 and where we have designated L£{y(t)} = Y (s) and
L{F @)} = F(s).
We define the transfer function of a system to be the ratio of the Laplace transform of the output
signal to the Laplace transform of the input signal with the initial conditions as zero. The transfer
function (a function of s), is denoted by H(s). In this case
Y(s) _ 1
F(s) T as?+bs+c

H(s)=

Now, in the special case in which the input signal is the delta function, f(t) = d(t), we have F(s) =1
and so,

H(s) =Y(s)

We call the solution to the differential equation in this special case the unit impulse response
function and denote it by h(t)u(t) (we include the step function u(t) to emphasize its causality).
So

h(t)u(t) = L7 {H(s)} when  f(t) = 4(t)

Now, keeping this in mind and returning to the general case in which the input signal f(t) is not
necessarily the impulse function &(t), we have:

Y(s) = H(s)F(s)
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3.2. Modelling linear systems by transfer functions

We have seen previously that an engineering system can be modelled by one or more differential
equations. However, with the introduction of the transfer function we have an alternative model
which we examine in this Section.

It will be helpful to develop a pictorial approach to system modelling. To begin, we can imagine a
differential equation:
d’y _dy
—+b—+cy=flt
g thg T =70
The system is characterized by the values of the coefficients a, b, ¢. A different engineering
system will be characterized by a different set of coetficients. These coefficients are independent
of the input signal. Changing the input signal does not change the system. It is the system that
changes the input signal into the output signal. This is easy to describe pictorially (Figure 3.1).

J) system 1)

a b, c

input signal output signal

Fig. 3.1: Block diagram describing the system in the t-domain
After the Laplace transform of the differential equation is taken, the differential equation is
transformed into in which H(s) is the transfer function. The latter characterizes (in Laplace
transform terms) the engineering system from which it was derived. The relation, connecting the
Laplace transform of the output Y (s) to the Laplace transform of the input F(s), can also be
described schematically (Figure3.2).

1
Y(s)=H(s)Fis H(s) =
(5) = H()F(s)  H(s)= ———
F(s) system ¥(s)
- e
input signal H(s) output signal

Fig.3.2: Block diagram describing the system in the s-domain

An example of a block diagram is the so-called negative feedback loop, shown in Figure 3.3 (we
are using G(s) to denote the transfer function):
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¥Fis)
Gix)

Fig. 3.3: Negative feedback loop

Here, the output signal is tapped and subtracted from the input signal. Hence
Y(s) = G(s)Yi(s)
because ¥;(s) is the input signal to the system characterised by transfer function (G(s). However, at
the summing point Y|(s) = F(s) — Y (s) and so
¥(s) = G(s)(F(s) - Y(5))
from which we easily obtain:
G(s) }
Yis)= F
)= || £
so that, in terms of input and output signals, the feedback loop is characterised by a transfer function
G(s)
14+ G(s)

3.3 Laplace Transforms and Impedance

Remember phasor analysis is only valid for sinusoidal steady-state. Turns ac analysis into an
analysis similar to the dc. (Ohm's law)

Resistance R
Inductive Reactance X, =jo-L o=2rf j=90°
Capacitive Reactance X == 1 =—j- 1 = 1 = O
> J-®-C \®-C ]
Vi (s) : . V; (jo)
Ls=—_=>< Inductors oL =1
I.(s) . ]
1 _ V()
Cs I.(s)
R = VR7(3) Pasiitore R = w
T I (s) - Iz (jo)
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3.4 Laplace Representations of OP AMP Circuits

Find |/O relationship of integrator using Laplace relationships
i

Use OP AMP theory and solve. No |
: enters inverting node and V=V"=0 due
_va{ ) to ground connection.

IROLY ,T.uj el

Use KCL at inverting node :‘-fm({')= 'Mm
-Vt Ly d -V =0 S Subsfitute info
M’r\‘ i‘lﬁ:—_- i‘m ci—r( & ] \I'"&} i ~ KCL equation
é - SV _ea \i) V) . - _J_ )
e vyl w40 cr {"’*“d(}) AR
i : Rin

il

Vuld |~ 4

i

Integrate both sides of above equation to get ¥V, (1). Integration is inverse of
differentiation

bz foade =~ <[ 9

A ey dt LN
©°

& -__‘-'_.[L-U &=VE
ﬁfmm de=\4,G) RunC s) '
n TR Can use generalized gain

formula of inverting OP AMP

Laplace of
and Laplace Impedances

Equation

Example 3.5: Find the input/output relationship for the circuit shown below?

AA A
LAl

L

uig}_ :‘ j v-[: _va[t)
Rin v

Sol.
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L Generalized gain formula

V-E!) E j v I~ Volt)
>_—O V - §£ Use Laplace impedance
.-~ N relationships to find gain

R | v
— N6 20
V. &5) 2.~
Vua) = L"%"“L
so Efn"“ R.ll Lg a‘@) =R
<
Lve)e Ve AR Ls . e

uWE - Re

————— e R.rq't

A T Rils = ""Q([——]Lg ‘-‘H.E_'F{‘qln ‘H-S]
RHL: R.‘n Lﬂ

R+ Ls

i LI WISV E__) T
e =(5L@u(gju)(%) KAV SV

QuUTPul 18 Sum oF And integrator = EL \! L’) Division |
CansTANT GAIn action Integrati-

"-hnﬁl,lﬁllll t Cansider a I'hlu-..j--lu.n.:| eltﬂ“f{f_-j M—Luﬁu{"', ‘El""‘\-J‘ e, *i’uu:#cr"

4. . R .
b N £ et
sﬂ.ﬂ e
u;r kA s ‘_'“_ 3 L Ik-,_a;
R Laplace fn“ﬁ..,.... L e
—_ W= LR o™ g LST-.. O "'35“*"::] Tare ithad Gndl Ay
ot L= C ﬂ
=& -
—bI=C-5\{—p.U‘__=:? ———— (T
b GJ
_-\{ =.I£.;_E;§ e LlsT
R i 2
— Tranifer It"“"‘"-""-""": Ve = LS Tcs)
v I“JL‘-"‘LS*.;-_-;
z
—_— Vo = s
Vi Sh &S+ qe
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4. Self- Test

1. Find the input/output relationship for the differentiator.?
2. Find T.F. (Eo/Ei) for RC — series circuit when C on the output?

3.5 Block diagram

= In the introductory section we saw examples of block diagrams
to represent systems, e.g.:

-

Wis)

u i
Gist | (Eg--»s-‘-]-- Gl »

Block diagrams consist of

-

O Blocks — these represent subsystems — typically modeled by, and labeled

with, a transfer function

o Signals — inputs and outputs of blocks —signal direction indicated by

Wis)

¥ i
&5l D2 o

R[s
[sh Tx Eis)

izl

arrows — could be voltage, velocity, force, etc.

o Summing junctions — points were signals are algebraically summed —
subtraction indicated by a negative sign near where the signal joins the

summing junction

o The basic input/output relationship for a single block is:

Us)

Gls)

¥(s)

Yis)=1THs): Gl5)

=1 Block diagram blocks can be connected in three basic forms:

o Cascade
o Parallel
o Feedback

o We'll next look at each of these forms and derive a single-
block equivalent for each
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Cascade Form

— Blocks connected in cascade:

Lis)
LB P

¥4l(s)

&3}

Hls)

Gyls)

X1(s) = U(s) - G1(s), X3(s) = X,(s) - Ga(s)
Y(s) = X3(s) - G3(s) = X,(s) - G,(s) - G5(s)

Y(s) = U(s) - G1(8) - G2(s) - Gz(s) = U(5s) - Geg(s)
Geq(s) = Gy1(s) - Gy(s) - Gz(s)

¥(s)

-1 The equivalent transfer function of cascaded blocks is the
product of the individual transfer functions

Uis)

—— Gy[5)-Ga(5)-Gals)

Parallel Form

o Blocks connected in parallel:

Gyls)

s}

:ﬂi:l

Y

w2 =

Yis

G5}

Gafs)

- 4

b

¥{s)

X, (s)=U

(s) - Gy (s)

X5(s) = U(s) - Ga(s)
Xa(s) = U(s) - G (s)
Y(s) = X1(s) £ X,(5) £ X3(5)

Y(s) = U(s) - Gy(s) £ U(s) - Gy(s) £ U(s) - G3(s)
Y(s) = U(s)[G1(s) £ G2(s) £ G3(s)] = U(s) - Goy(s)
Geg(s) = G1(5) £ G2(s) % Ga(s)

- The equivalent transfer function is the sum of the individual

transfer functions:

Uis)

Gy{5)2G,{s)#GE:(s)

¥(s)
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e Feedback Form

~ Of obvious interest to us, is the feedback form:

Ris) Efs)

Gis)

¥is)

Y(s) = E(s)G(s)

Y(s) = [R(s) — X(s)]G(s)

Xis)

His}

Y(s) = [R(s) = Y(s)H(s)]G(s)

Y(s) =R(s)-

Y(s)[1+ G(s)H(s)] = R(s)G(s)

G(s)
1+ G(s)H(s)

= The closed-loop transfer function, T'(s), is

T(s)

Gis)

_Y(s) _ G(s)
T R(s) 1+ G(s)H(s)

Ris) Eis)
Xis)

1 G(s)
Y=gy G(s)H()

His]

7 Mote that this is negative feedback, for positive feedback:

Tiz)=

G(s)
1—G(s)H(s)

o1 The G(s)H(s) factor in the denominator is the loop gain or open-loop

transfer function

7 The gain from input to output with the feedback path broken is the
forward path gain — here, G(s)

© In general:

T{s) =

forward path gain
1 — loop gain

32



3.6 Block Diagram Algebra
- Often want to simplify block diagrams into simpler,
recognizable forms

O To determine the equivalent transfer function

- Simplify to instances of the three standard forms,
then simplify those forms

-1 Move blocks around relative to summing junctions
and pickoff points — simplify to a standard form

o Move blocks forward/backward past summing junctions
o Move blocks forward/backward past pickoff points

e Note: Obtaining Cascaded, Parallel, and Feedback (Closed-Loop)
Transfer Functions with MATLAB

numl num?
A G-r ==
denl 2(s) den?

To obtain the transfer functions of the cascaded system, parallel system, or feedback
(closed-loop) system, the following commands may be used:

Gy(s) =

[num, den] = series(num1,den1,num2,den2)
[num, den| = parallel(num1,den1,num2,den2)
[num, den] = feedback(num1,den1,num2,den2)

As an example, consider the case where

. 10 _numl G _ 5 _num2
T #+25+10 denl’ 2‘:3)_s+5_dcn2

MATLAB Program 2-1 gives C(s)/R(s) = num/den for each arrangement of G,(s)
and G,(s). Note that the command

Gy(s)

printsys(num,den)

displays the num/den [ that is, the transfer function C(s)/R(s) ] of the system considered.
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Ris) Cls)

{a) | (Gi(5]  [— (yfg)  — MATLAB Program 2-1

num1 = [10];
denl =[1 2 10];
num2 = [5];
den2 = [1 5];

[num, den] = seriesinum1,denl,num2,den2);

printsys{num,den)
————i Gl{-ﬂ
num/den =
Riz g
o B ls) -
™3 + T2 + 20s + 50
. Inum, den] = parallelinum1,den1,num2,den2);
Gl printsys{num,den)

num/fden =
Ssn2 + 20s + 100

Ris) Cis) sA3 + 752 + 205 + 50
, @ =1 Gils) o [num, den] = feedback{inum1,denl, num?2,den2);

printsys{num,den)
numfden =

(5] [ tm— 10s + 50
sA3 + 75A2 + 20s + 100

)

3.7 Block Diagram Reduction
3.7.1 Block Diagram Reduction Rules

Table 1: Block Diagram Reduction Rules

1. E Combine all cascade blocks

2. | Combine all parallel blocks

3. E Eliminate all minor {interior) feedback loops

4. l _Shift summing points to left

5. | shift takeoff points to the right

6. I Repeat Steps 1 to 5 until the canonical form is obtained
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Table 2: Basic rules with block diagram transformation

Manipulation Original Block Disgram Equivalent Block Disgram Egquation
bining Blocks " , , i

il v  x—[6G}+7 |r=@Gx

- ¥,
Combining Blocks in X Bg—> ) _ . )
Parallel; or Eliminating a 1 X—e|G 2G|+ V=(G+G)X
Forward Loop
Moving a pickoff point | U H m ¥ yv=Gu
behind a block 1 :

] ] = E ¥
Mowing a pihekoll point i ¥
ahead of a block ¥ ; =G
Moving & summing -
puint behind a block | ' '-'? " iy ) )

iy Hy >
Moving a summing point; B ) ¥
shead of a block ¥="0m, —u,

15 6F L
{7, 1'G, b 5, i p
i i 0 e

Example 3.6: Simplify the block diagram shown in Figure 3.4 to 3.5, Obtain the transfer
function relating C(s) and R(s)?

Ris}y

Hy

L 3

Riz}

Ha =t;

Fig.3.4

)

5]

Fig.3.5

Cls)
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Cs)

Ris)
—p—@—» iy —h—@-b—— Gs > @—b Gy G,
r By |- I Hy
Fig.3.6
Ans. of Fig. 3.4
Rix) G H 1)
(b) v om = e
Riz) G+ Hy Cls)
il " | 1+ G, "
Ans. of Fig. 3.5
Riz) s
Gy L)
(2
Ris) @ Cish
| G 4] p—t—] G [—
(b}
Rix) Cis)
— G+ s 4 ] f——

fc)



3.7.1. Transfer Function of a Simple System Using Matlab
Example: Simplify the block diagram shown in Figure 3.7 Then obtain the closed-loop by
using matlab?

+
5 +
RO+ 3 3 1 gor
fal
Ans.

s=tf{"s"); % specify a transfer function using
a rational function in the Laplace
wvariable s

syshG1=2; % define subsystem G1

sysh2=4/5; %% define subsystem G2

sysh3=parallel{sysG1,sysG2); %% parallel combination of G1 and G2

sysG4=1/5; % define subsystem G4

syshS5=series(sysG3,sysG4); % series combination of G3 and G4

sysh6=1;

sysCl=feedback(sysG5,sysG6,-1); % feedback combination of G5 and G6&

The Matlab results are sysCL of the form
¥iz) . 2x + 4
R(s) s2+2s+4

3.8. Mason’s Rule and the Signal Flow Graph

An alternative to block diagrams for graphically describing systems

Ri=) 1 Ef=) (s) s Gis) w(s)
o 3

=HIs)

Signal flow graphs consist of:
o Nodes —represent signals
O Branches —represent system blocks

Branches labeled with system transfer functions
Modes (sometimes) labeled with signal names
Arrows indicate signal flow direction

Implicit summation at nodes

o Always a positive sum
o Megative signs associated with branch transfer functions

37



3.8.1 Block Diagram Signal Flow Graph

To convert from a block diagram to a signal flow graph:

1. Identify and label all signals on the block diagram

2. Place a node for each signal
3. Connect nodes with branches in place of the blocks
1 Maintain correct direction
] Label branches with corresponding transfer functions

[J Negate transfer functions as necessary to provide negative feedback

4. 1If desired, simplify where possible

-1 Convert to a signal flow graph

Ris)

—_—y

= Label any unlabeled signals
= Place a node for each signal

Hyls}

Hyls) ﬂrﬂf‘l Els

]

A=}

Dis) }i) G(s)

izl

Xs)

Hals)

s} ¥(s)
o Q
i)

o

Y(s)

X5} Els}
5] 0] @]
R(s) Xuls) Els) Uls)
Hys) () D(s) (s
X,
S A

Connect nodes with branches, each representing a system block
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RS) Hyfs) X6 1  E¢ D) Uy G Yo

0 »O »)

Note the -1 to provide negative feedback of Xi(s)

s Ha(s) Hals) 1 E(sk D) (L] Gis) Wiis)
"-:-‘r )

L

A=}

= Hzl(=)

Nodes with a single input and single output can be
eliminated, if desired

o This makes sense for X; (5) and X, (s)

O Leave U(s) to indicate separation between controller and plant

Ris} Ha(s) E{s) D=} s} G{s) sl
o -

~Hais)

Example:
= Revisit the block diagram from earlier

o Convert to a signal flow graph

Buls]

: F L .

m_@iﬁ Gls) j' Gl [ § Galsh ol i o
L

Hilsl

. Label all signals, then place a node for each

5] Hls) Halsl Kals) Hals) Hals} fis)
o o L] LE ] L o o
Xeis)
o
X;ish
0
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e
Hedrd _E
‘ 0] l_l
Bl

L Hyls}

-1 Connect nodes with branches

Gals)

Ri=) 1 Hafsh 1 Xam)  Gafs)  Malw Gas) Hyls) Gafs)  Kals) 1 ¥is

w{ﬂ

Hels]

Hals)

Hig} 1 Rqlnd 1 Agat  Gofs) A}

wﬂ}

LEA

o Simplify — eliminate Xz (s), X¢(s), and X-(s)

Gafs)

R} 1 Hylsk 1 Kafs)  Gafs)  Hulsm) Gais) KalE) Gals) W[a)
P -

H 1{3]

~Hzls)

3.9 Signal Flow Graphs vs. Block Diagrams
[ Signal flow graphs and block diagrams are alternative, though equivalent, tools for graphical
representation of interconnected systems
] A generalization (not a rule)
[ Signal flow graphs — more often used when dealing with state-space system models
) Block diagrams — more often used when dealing with transfer function system models
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3.10 Mason’s Rule
We’ve seen how to reduce a complicated block diagram to a single input-to-output transfer
function

1 Many successive simplifications

[ Mason’s rule provides a formula to calculate the same overall transfer function
[ Single application of the formula

[J Can get complicated

1 Before presenting the Mason’s rule formula, we need to define some terminology
Gs(s)

Ris) 1 Xi(s)  Ga(s) Xals) 1 Ga(s)  Xsls) Y(s)
’ U

-Hs(s)

Loop gain — total gain (product of individual gains) around any path in the signal flow graph
[J Beginning and ending at the same node

] Not passing through any node more than once

(1 Here, there are three loops with the following gains:

1. -G1H3
2. G2H,
3. -G2G;3H2

Forward Path Gain

-1 Forward path gain — gain along any path from the input
to the output

o Not passing through any node more than once

- Here, there are two forward paths with the following

gains:
1. G]_GEGE G-II-
2. 616265

R(s) 1

1

Xa(s)

Xi(s) Gi(s) Xa(s) Xa(s) Ga(s) Xs(s)
O O
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Non-Touching Loops

- Non-touching loops — loops that do not have any
nodes in common

o Here,
1. —G1H; does not touch G, H;
2. —GqH5 does not touch —G,G3H>

Non-Touching Loop Gains

Gs(s)

Ris) 1 Xis)  Ga(s) Xos) 1 Xss) 1 Xas) Ga(s) Xs(s) Ga(s) Xss)  Ga(s) Y(s)
O =0 »=0 =0 =0 » =0

LS Moo

-Ha(s) Ha(s)

7 Non-touching loop gains — the product of loop gains

from non-touching loops, taken two, three, four, or
more at a time

-1 Here, there are only two pairs of non-touching loops
1. [=GyH3] - [GH,]
2. [=G1H;] - [-G,G5H,]
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SUMMARY OF MASON’S RULE

Y(s) 1 ZP
k=1

R(s) A
where

P = # of forward paths

T, = gain of the k™ forward path

A =1 — E(loop gains)
+E(non-touching loop gains taken two-at-a-time)
—XE({non-touching loop gains taken three-at-a-time)
+Z(non-touching loop gains taken four-at-a-time)
—x ...

Ay = A — E(loop gain terms in A that touch the k™ forward path)

EXAMPLE:
Ggls)
%:m 1 f:::l 1 ﬂ':u Gyl M@ Vs
-Hals) krrﬁ]/}
-Hgls}
1 # of forward paths: © Z(NTLGs taken two-at-a-time):
P=2 (—G1H3G2H,) + (G1H3G2G3Hy)
- Forward path gains: B s
Ty = G1G,6G3G, A=1— (=GyH; + G,H; — G,G3H,)
TE == GIEZGE +(—G1H352H1 + GIHEGZGEHZ}
= X(loop gains):
_Glﬂ:; + GZHl — GZGSHZ
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- Simplest way to find A, terms is to calculate A with the Jt
path removed — must remove nodes as well

0 ee=1: Gefs)

-Hyls) Hils}
-Hais)
- With forward path 1 removed, there are no loops, so

A, =1-0
A =1
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Fifs) %305) Halg) ¥als) Hals) msﬁ;" Gafs) Halsh Gals) = Y=
.......................................................................................................... = P -
Hals) Hyls)
-Hzls)

A, =1—-0
ﬂ.z -
=1 For our example: ves) 1 P
P=2 T(s) =z =7 ) Tl
Ty = G1G5G306, R(S) ﬂk=1
T, = G,G,Gx
A =1+ G,H; — G,H, + G,GH, — G,H,G,H, + G, H,G,G3H,
Ay =1
A, =1

-1 The closed-loop transfer function:

TyA, + ToA,
=g
G1G5G3Gy + GGG

T(s) =
(- ) 1+G1H3 _GzHl +62G3H2 _61H362H1+51H3G2G3H2

S. Post- Test
1. Simplify the block diagram shown in Figure 3.6 Then obtain the closed-loop

transfer function C(s)/R(s).




Answer Keys

Pre- Test

1. C- initial conditions are assumed to be zero but loading is taken into account

explanation: -when deriving the transfer function of a linear element only initial

conditions are assumed to be zero, loading cannot be assumed to be zero

2. True.

Self-Test

Use rules of circuit analysis and ideal OP AMPs to find the input/output
relationship for the circuit below.

Define i (t) in terms of voltage

e i
i;()=C dt.ve(t)

Ve = Va(D-v (D)

Rules of OP AMPS
1.) No current flows into OP AMP
2)V-=V*

Sum currents at inverting input
=0 so 1, f0=-1(1)
iin(t)=ic(H)

Feedback current

if (t) = V‘o (t)R_ V_h (t)

Yo Use nodal analysis at OP AMP inverting node.
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Complete derivation

- i () =i, (t)
- y]- [M}

d 1 =%A0)
C-—lva “)]‘[_—Rf }

“R, €, 0] v,

Cirenit talrace Aarivedtiva af inm valteaa

N _-rt_'f.".‘} S
# K
sef E;cﬂ(#_‘) L Ieh(ﬂ
€ ety = ECEIR 4 V[ () S amdd .:'cﬂ:l::_rg. 3 T L

- Eisy=Tes) R+ _-EE_‘ ;
s

ﬂHJ Eﬂ :%[T‘): r_.“] -~—®
s

— FELS)
&::(.5?: <3

Eoes)  ZesHR+ Tes?
<5

_‘Tfhni ;fr .#uvlcj-l'aﬂ.:

1 |
=
Res—+1 7TS5+/

whete T=RC

Post- Test
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Cis)

fis)
@—» Gy [ : @-»— Gy == G,
t Hy |- t Hy |
(8]
Hy B
GiGs |
Riz) 7y a N Gy Gy E{ﬂ
1 +Gy Gs Hy it 14 Gy (54 Ha =
1]
K} G, G, G5 Gy s}

I+ Gy G Hy + Gy g Hy— G Oy Hy+ Gy Gy Gy G Hy Hy

{c)
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Ministry of high Education and Scientific Research
Middle Technical University
Electrical Engineering Technical College
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1.

a.

N

Overview
Target Population: For students of fourth stage for Medical Instrument Department in

Electrical Engineering Technical College

Rationale: A Control Systems Engineer is responsible for designing, developing, and
implementing solutions that control dynamic systems.

Central Ideas: Control Systems Engineering is the engineering approach taken to
understand how the process can be managed by automation devices and to implement
such into operation.

Objectives: After completing this lecture, the student will be able to:

Define time response specification.

Describe steady state error

2. Pre-Test:
1. The time response of linear system is the addition of transient response which
depend on preliminary conditions. State True or false
2. the steady-state response which is based on output of system? State True or

false.

Note: Check your answers in “Answer Keys” in end of unit. If you obtain 75% of solution,
you cannot need to this unit. If your answer is poor, you will transfer to next page.
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3. Theory:

3.1 Introduction:

Fime domain and f req uen ¢y-domain

Two types of mathematical tools:
1) Time Domain Analysis

- Time domain analysis examines the amplitude vs.
time characteristics of a measuring signal.

2) Frequency Domain Analysis

- Frequency domain analysis replaces the measured
signal with a group of sinusoids which, when added
together, produce a waveform equivalent to the
original.

- The relative amplitudes, frequencies, and phases
of the sinusoids are examined.

3.2 Typical Test Signals

The commonly  used test input signals are step functions,
ramp functions, acceleration functions, impulse functions, sinusoidal functions, and white
noise. In this chapter we use test signals such as step, ramp, acceleration and impulse
signals. With these test signals, mathematical and experimental analyses of control systems can
be carried out easily, since the signals are very simple functions of time Which of these typical
input signals to use for analyzing system characteristics may
be determined by the form of the input that the system will be subjected to most
frequently under normal operation. If the inputs to a control system are gradually
changing functions of time, then a ramp function of time may be a good test signal. Similarly, if
a system is subjected to sudden disturbances, a step function of time may be a
good test signal; and for a system subjected to shock inputs, an impulse function may be
best. Once a control system is designed on the basis of test signals, the performance of
the system in response to actual inputs is generally satisfactory. The use of such test
signals enables one to compare the performance of many systems on the same basis.
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3.3 Transient Response and Steady-State Response

The time response of a control system consists of two parts: the transient response and the steady-
state response. By transient response, we mean that which goes from the initial state to the final
state. By steady-state response, we mean the manner in which the system output behaves as
t approaches infinity. Thus the system response c¢(t) may be written as
where the first term on the right-hand side of the equation is the transient response and
the second term is the steady-state response.

c(t) = cult) + css(t)
where the first term on the right-hand side of the equation is the transient response and

the second term is the steady-state response.

3.4 First-Order Systems

Consider the Oirst—order system shown in Figure 5—1{a). Physically, this sysicm may
represenl an KO circuit, thermal system, or the like. A simgplified block disgram i< shown
im Figure 5—1{b}. The input-output relationship is given by

sy _ 1

Rz} Tx + 1
In the following. we shall analyze the system responses to such inputs as the undt-step,
onit-ramp, and unit-impulse fonctions. The initial conditions arc assumed 1o be z2oro

MNote that all systems having the same transfer function will cxhibit the same outpat

in responsce to the same inpul. For any given physical sysiem. the mathecmatical responsc
can be given a physical imterpretation.

{nit-Step Response of First-Order Systems.  Since the Laplace transform of
the wnit-step function is 1 fr sobstituting R{s) = 1/ into Egquation {5—1]), we obtain
1 1
i —_ ———
W s i
Expanding [ &) into partial fractions gives
1 T 1 1
Pz 0 I - T LI 1L ITRRPRRSE 1, SR .- SO
B T el T et ()
Taking the inverse Laplace transform of Eqgoation {(5—2),. we obtain
cft)] = 1 — 7T, fori = 0
Eguation (53} states that initially the output ofr ) is >ero and Anally it becomes unity
O imiportant characteristic of such an exponential response curve ofr ) is thatatr = T
the value of c(#) i= 0632, or the response ofr) has reached 63 2%, of its total change. This
may be casily scen by substituting ¢ = T in oz ). That is.

efT) =1 — & = 0A32

Ay Esy 1 LAy Hial 1 )
= = = T+ 1 -

qa) EL:1]

FIG. 1: (a) Block diagram of a first-order system; (b) simplified block diagram
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FIG.: Exponential response curve.

Unit-Ramp Response of First-Order Systems. Since the Laplace transform of
the unit-ramp function is 1 /s%, we obtain the output of the system of Figure 5-1(a) as

I 1
) S rie
Expanding C(s) into partial fractions gives
¥ T =
COEE T T R

Taking the inverse Laplace transform of Equation (5-5), we obtain
c(t)=t—T+Te¥, fort=0

The error signal e(r) is then

r(t) — ¢(1)
= T(1 — ")

e(t)
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FIG: Unit-ramp response of the system.

4. Self- Test

1. Draw Unit-Impulse Response of First-Order Systems?

3.5 Second-Order Systems

The closed-loop transfer function is obtained as:

C(s) K K/J

R(s) JSe +Bs+K £+ (B/)s+ (K/)

54



Step Response of Second-Order System. The closed-loop transfer function of
the system shown in Figure 5-5(c) is
C(s) _ K
R(s) Js"+Bs+ K

(5-9)

which can be rewritten as

|

C(s)

MR T CE

The closed-loop poles are complex conjugates if B> — 4JK < 0 and they are real if
B* — 4JK = 0.In the transient-response analysis, it is convenient to write

K B

- Wy, 7 =Uw, =20
where o is called the attenuation; @, , the undamped natural frequency; and £, the damp-
ing ratio of the system. The damping ratio { is the ratio of the actual damping B to the
critical damping B. = 2V JK or

B

i B.  2VIK

R(s) £s) [ 2 C(s)
" @ | o+ 220y =

In terms of { and w,, the system shown in Figure 5-5(c) can be modified to that shown
in Figure 5-6, and the closed-loop transfer function C(s5)/R(s) given by Equation
can be written

C(s) wp
R(s) s+ 2fw,s + o
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(2) Critically damped case ({ = 1): 1If the two poles of C(s) /R(s) are equal, the system
is said to be a critically damped one.
For a unit-step input, R(s) = 1/s and C(s) can be written
2

C(s) = ———

() (.s' + m,,]zs

The inverse Laplace transform of Equation (5-14) may be found as
c(t) =1 —e*(l +w,i), fort=0

This result can also be obtained by letting { approach unity in Equation (5-12) and by
using the following limit:

sin wyt I sinw, V1 — 2t
—— = llm = t
{—1 ) £2 £{—1 4 ,.1‘1 _ ;-1 @n

(3) Overdamped case ({ > 1): In this case, the two poles of C(s)/R(s) are negative
real and unequal. For a unit-step input, R(s) = 1/s and C(s) can be written

wy
(s + Lo, + @, VI — 1)s + {w, — 0,V — 1)s

The inverse Laplace transform of Equation (5-16) is

C(s) =

eft) =1+ ! e VIl
N — L[+ Y1)
. VT Ty

AN — 1~ VE=1)

forr =10

1 % w, (E’ 5y i & :11)
NV -1\ & .
where s, = ({ + V* — 1)w, and s, = ({ — V{* — 1)w,. Thus, the response ¢(t)

includes two decaying exponential terms.

Definitions of Transient-Response Specifications. Frequently, the performance
characteristics of a control system are specified in terms of the transient response to a unit-
step input, since it is easy to generate and is sufficiently drastic. (If the response to a step
input is known, it is mathematically possible to compute the response to any input.) The
transient response of a practical control system often exhibits damped oscillations before
reaching steady state. In specifying the transient-response characteristics of a control system
to a unit-step input, it is common to specify the following:

56



1. Delay time, tq
2. Rise time, t;
3. Peak time, t;
4. Maximum overshoot, M,
5. Settling time, ts
Maximum (percent) overshoot, My: The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to use the maximum
percent overshoot. It is defined by:

f(f F) — ¢(pa)

Maximum percent overshoot = X 100
c(o0)

The time-domain specifications just given are quite important, since most control

systems are time-domain systems; that is, they must exhibit acceptable time responses.

(This means that, the control system must be modified until the transient response is

satisfactory.)

clf) &

Allowable tolerance

Xf ______________ 4_{_ 0.05

or
0.02

1
|
]
l
|
1
0.5 ===~ I
I
1
1
!
1
I

!
r

Fig.: Unit-step response curve showing td, tr, tp,Mp and ts.
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For convenience in comparing the responses of systems, we commonly define the
settling time 1, to be

4 4 o g
t,=4T = g (2% criterion)
or
3 3 o g
=3 == Tw, (5% criterion)
EXAMPLE:

Consider the system shown in Figure 5-6, where { = 0.6 and w, = 5 rad/sec. Let us obtain the rise
time 7, peak time 7,,, maximum overshoot M, and settling time 7, when the system is subjected
to a unit-step input.

Ris) Els) ol C(s)
s+ 2w, ) s

Figure 5-6

Second-order system.

Sol.
From the g:i{reazl. values of £ and w,, we obtain w; = m_m =dand o = {w, = 3.
Rige gime t,:  The rise time is
=—8 _314-8
o 4

L=

where 8 is given by

ek

B= tan_l: = ta:n"g- = (193 rad

The rise time 7, is thus

M = 314 —-093 (.55 e
4
Peak time t; The peak time is
== =31 _ 5785 sec
iy 4

Maximum overshoot My:  The maximum overshoot is

M, = glrtade = O/PAK = o3

The maximum percent overshoot is thus 9.5%.

Seitling time t,:  For the 2% criterion, the settling time is

4 4
t'_;_i_ 1.33 sec
For the 3% criterion,
[ 1= in 1 sec
= 3
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3.6

Steady state error

1 1
", 95 S A e e—,
1+ GD4 | + GDy

(4.27)

To consider polynomial inputs, we let rif) = r*l.l'k!l{i‘} for which the
ransformis R = ;L—[_WE take a mechanical system as the basis for a generic
eference nomenclature, calling step inputs for which & = 0 “position™
nputs, ramp inputs for which £ = | are called “velocity™ inputs, and if
: = 2, the inputs are called “acceleration”™ inputs, regardless of the units
of the actual signals. Application of the Final Value Theorem to the error
‘ormula gives the result

lim e(1) = &, = lim sE{x), (4.28)
I— o0 sl
1
= lims————R(s), (4.29)
=0 | 4+ GDy
1 1
= lims (4.30)

i—=0 1+ GDg &+

We consider first a system for which Dy has no pole at the origin, that
is, no integrator, and a unit-step input for which R(s) = 1 /. Thus r(t) is a
polynomial of degree (). In this case, Eqg. (4.30) reduces to

1 1

= lim§——— 431
€gg !—rﬂ‘jl Y GD, f { )
Eiq oy 1
—_— = — =gy = —— 432
Fes 1 T 1 4+ GD4(0) i

where ry = limys a0 rif) = 1. We define this system to be Type 0 and we
define the constant, GO () & K. as the “position error constant.” Notice
that the above equation yields the relative error and if the input should be a
polynomial of degree higher than 1, the resulting error would grow without

bound. A polynomial of degree 0 is the highest degree a system of Type 0

can track at all. If GD4(5) has one pole at the origin, we could continue
this line of argument and consider first-degree polynomial inputs but it is
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4.2 Control of Steady-State Error to Polynomial Inputs: System Type

Errors as a Function of System Type

Typelnput Step (position) Ramp (velocity) Parabola (acceleration)

1

Type & —_— og oo
w 1+
1
Type 1 ] = oo
Type 2 a o —
¥p Xa

Using Eq. {4.33), these results can be summarized by the foll

equations:
Ky, = lim GD4(5), =0,
== JR o). n

K, = lim sGD(5), n=1,
5—=0

K= lijra PLGD4s), n=2.
]

5. Post- Test

1. For the system shown in Figure 5-13(a), determine the values of gain K and velocity-
feedback constant Kh so that the maximum overshoot in the unit-step response is 0.2 and
the peak time is 1 sec. With these values of K and Kh, obtain the rise time and settling
time. Assume that J=1 kg-m2 and B=1 N-m/rad/sec. Determination of the values of K and

Kh: The maximum overshoot Mp is given by Equation

MP ] e_(;f v 1_{-}‘7

Rix) Ciz)

_"" b'é s+ B

]

(2}

FIG. 5-13
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Answers:

Answer Keys

Pre- Test

1. True
2. False, Input not output

Self-Test
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Unit-Impulse Response of First-Order Systems.

For the unit-impulse input,

R(s) = 1 and the output of the system of Figure 5-1(a) can be obtained as

1
Ts+1

C(s) =

The inverse Laplace transform of Equation (5-7) gives

1
gl =,

forr =0

The response curve given by Equation (5-8) is shown in Figure 5—4.

clt) |

0 t
Post- Test
This value must be 0.2, Thus, Then &, s from Equation (3-23),
V= = 05 - .
WKIE-8 2WKi-1
o = ,f == B
=16l
Vi1-g
which yields Rise iimet,:  From Equation (3-19). the rise time 1, is
£ = 0.456
-8
The peak time 1, is specified as | sec: therefore, from Equation (3-20), L= o
™
=] i
or o
= 124 =tan 105 =
wy =314 pB=tan = tan™ 195 = L1D
Si is 0.456, w, is .
Sl i aiy g Thus 1, is
w, = = = 357
Ll 1, = Db sec
Since the natural frequency w, is equal 1o VR T . Sﬂ:ﬁng fimet,: For the 2% criterion,
K= Juw=wl=125N-m i
[=—=248sec
r
For the 5% criterion,
=== 18 sec
T
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