AL. MUSTACBAL UNIVERSITY

COLLEGE OF ENGINEERING AND TECHNOLOGIES
ALMUSTAQBAL UNIVERSITY

Digital Signal Processing (DSP)
 CTE 306

Lecture 15

- Finite Impulse Response (FIR) Filters -

Dr. Zaidoon AL-Shammari
Lecturer / Researcher
zaidoon.waleed@mustaqbal-college.edu.iq

Finite Impulse Response (FIR) Filters

$>$ FIR filters are nonrecursive filters.
$>$ The input-output relation of the FIR filters in time domain:

$$
\mathrm{y}[\mathrm{n}]=\sum_{K=0}^{M} b_{k} x[n-k]
$$

$$
b_{k} \text { are the filter coefficients }
$$

Finite Impulse Response (FIR) Filters

$>$ FIR filters have a finite-duration impulse response.
$>$ FIR filters take the number of samples equals to the number of past inputs
for the impulse response to become zero.

Finite Impulse Response (FIR) Filters

$>$ This FIR filter has the effect of averaging every N samples in the input signal.
$>$ Any filter with this type of impulse response is called as a moving average filter.

A FIR filter has a set of filter coefficients $\{b k\}=\{3,-1,2,1\}$. Determine the difference equation for the filter.

Sol:

The length of the filter is 4 .

$$
y[n]=3 x[n]-x[n-1]+2 x[n-2]+x[n-3]
$$

Linear time invariant system

Given the linear time-invariant system

$y(n)=0.5 x(n)+0.25 x(n-1)$ with an initial condition
a) Determine the unit-impulse response $h(n)$.
b) Draw the system block diagram.
c) Write the output using the obtained impulse response.

Sol:
a) According to Figure 1 , let $x(n)=\delta(n)$, then

$$
h(n)=y(n)=0.5 x(n)+0.25 x(n-1)=0.5 \delta(n)+0.25 \delta(n-1) .
$$

Solution

Al-Mustaqbal
University
Thus, for this particular linear system, we have

$$
h(n)= \begin{cases}0.5 & n=0 \\ 0.25 & n=1 \\ 0 & \text { elsewhere }\end{cases}
$$

b) The block diagram of the linear time-invariant system is shown as

c) The system output can be rewritten as

$$
y(n)=h(0) x(n)+h(1) x(n-1) .
$$

In general, we can express the output sequence of a linear time-invariant system from its impulse response and inputs as

$$
\begin{equation*}
y(n)=\ldots+h(-1) x(n+1)+h(0) x(n)+h(1) x(n-1)+h(2) x(n-2)+\ldots . \tag{3}
\end{equation*}
$$

Equation (3) is called the digital convolution sum, which will be explored in a later section. We can verify Equation (3) by substituting the impulse sequence $x(n)=\delta(n)$ to get the impulse response

$$
h(n)=\ldots+h(-1) \delta(n+1)+h(0) \delta(n)+h(1) \delta(n-1)+h(2) \delta(n-2)+\ldots,
$$

Determine the first four samples in the impulse response for the FIR filter.

$$
y[n]=0.5(x[n]+x[n-1]+x[n-2])
$$

Sol:
Substituting $\delta[\mathrm{n}]$ for $x[n]$ and $\mathrm{h}[\mathrm{n}]$ for $y[n]$.

$$
\begin{aligned}
h[n] & =0.5(\delta[n]+\delta[n-1]+\delta[n-2]) \\
h[0] & =0.5(\delta[0]+\delta[-1]+\delta[-2]) \\
& =0.5(1.0+0.0+0.0)=0.5
\end{aligned}
$$

Solution

$$
\begin{aligned}
h[1]= & 0.5(\delta[1]+\delta[0]+\delta[-1]) \\
& =0.5(0.0+1.0+0.0)=0.5
\end{aligned}
$$

$$
\begin{aligned}
h[2] & =0.5(\delta[2]+\delta[1]+\delta[0]) \\
& =0.5(0.0+0.0+1.0)=0.5
\end{aligned}
$$

$$
h[3]=0.5(\delta[3]+\delta[2]+\delta[1])
$$

$$
=0.5(0.0+0.0+0.0)=0
$$

Determine the first six samples in the impulse response for the FIR filter.

$$
y[n]=0.25(x[n]+x[n-1]+x[n-2]+x[n-3])
$$

Sol:
Substituting $\delta[\mathrm{n}]$ for $x[n]$ and $\mathrm{h}[\mathrm{n}]$ for $y[n]$.

$$
\begin{aligned}
h[n] & =0.25(\delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]) \\
h[0] & =0.25(\delta[0]+\delta[-1]+\delta[-2]+\delta[-3]) \\
& =0.25(1.0+0.0+0.0+0.0)=0.25
\end{aligned}
$$

Solution

$$
\begin{aligned}
h[1]= & 0.25(\delta[1]+\delta[0]+\delta[-1]+\delta[-2]) \\
& =0.25(0.0+1.0+0.0+0.0)=0.25
\end{aligned}
$$

$$
\begin{aligned}
h[2] & =0.25(\delta[2]+\delta[1]+\delta[0]+\delta[-1]) \\
& =0.25(0.0+0.0+1.0+0.0)=0.25
\end{aligned}
$$

$$
\begin{aligned}
h[3]= & 0.25(\delta[3]+\delta[2]+\delta[1]+\delta[0]) \\
& =0.25(0.0+0.0+0.0+1.0)=0.25
\end{aligned}
$$

$$
\begin{aligned}
h[4] & =0.25(\delta[4]+\delta[3]+\delta[2]+\delta[1]) \\
& =0.25(0.0+0.0+0.0+0.0)=0.0
\end{aligned}
$$

Solution

Al-Mustaqbal

$$
\begin{aligned}
h[5]= & 0.25(\delta[5]+\delta[4]+\delta[3]+\delta[2]) \\
& =0.25(0.0+0.0+0.0+0.0)=0.0
\end{aligned}
$$

AL- MUSTAQBAL UNIVERSITY COMPUTER TECHNIQUES ENGINEERING

Al-Mustaqbal
University

