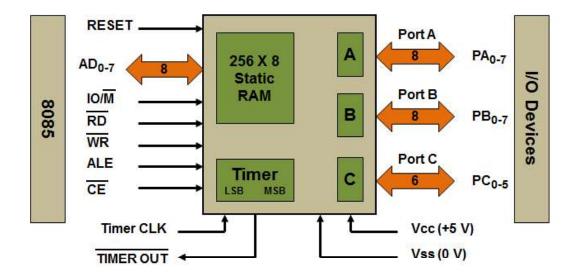

Real Time System Third Level Lecture Ten

Programmable Interface Devices

- Used to interface an I/O device to the microprocessor.
- Can be programmed/configured to perform various I/O functions by writing software instructions.

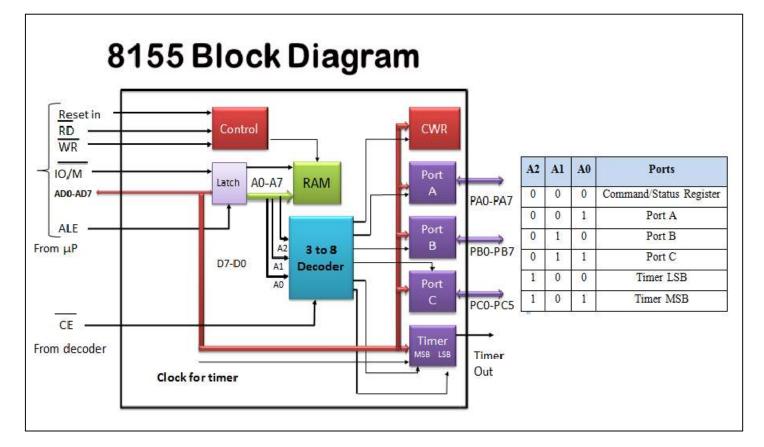

8155/8156 – A Multipurpose Programmable Interface

Its programmable interface device used to interface I/O device to μ P, its multifunction device, contain RAM, I/O ports, and timer.

- Designed to be compatible with 8085.
- It includes:
 - 256 bytes of Read/Write memory.
 - Three I/O ports (programmable I/O):
 - Port A (8-bit).
 - Port B (8-bit).
 - Port C (6-bit).
 - A 14-bit timer.

PC3 Vcc PC4 PC2 TIMER IN PC1 RESET PC0 PC5 PB7 TIMEROUT PB6 IO/M PB5 (CE IN 8156) PB4 RD R155 ALE PB1 AD0 PB0 AD1 PA7 AD2 PA6 AD3 PA5 AD6 PA2 AD7 PA1 Vss PA0

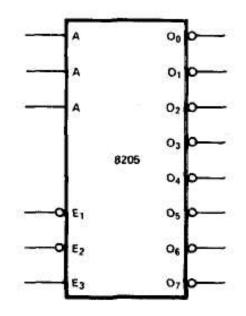
BLOCK DIAGRAM - 8155



The 8155/8156 is a device with two sections:

- The first is 256 byte static memory (RAM).
- The second is programmable I/O ports.

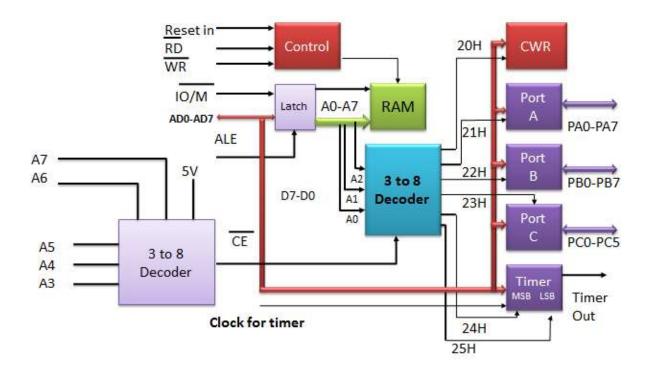
Functionally the two sections is used as two independence chips, the I/O section include two 8 bit parallel I/O ports (A, B), and one 6 bit port (C), and bit timer, all ports can be simply configured as I/O ports.


- 8155 block diagram shows 5 control signals, all except (CE) are input signal directly generated by the processor; the (CE) is input from decoder.
 - CE: chip enable, connected to the decoder.
 - IO/M: specify whether the memory section is selected, or I/O section (include timer) is selected.
 - ALE: address latch enable.
 - \circ RD and WR
 - RESET: connect to the RESET out of processor used to reset the chip and initializes I/O ports as input.
- In 8155 we have control register, 3 I/O ports, and 2 register for timer, so we need 3 address lines to decode there register.

How to Calculate Address of control register and I/O Ports of 8155?

By using 3 to 8 decoder 8205 which have 3 enables.

Why and How?



ADDRESS ENABLE			OUTPUTS										
A	A	Α	E,	E2	£3	0	1	2	3	4	5	6	2
L	L	L	L	L	н	ι	н	н	н	н	н	н	
н	L.		L	L.	H	H	L	H	H	H	24	H	- 18
L	H	L	L	L	н	H	H	L	н	н	н	н	H
н	н	L	L	L	H	н	н	н	1.2	н	н	н	н
L.	ι.	H	L	τ.	H	H	н	H	*	٤.	н	74	H
н	L	н	L	4	H	H	H	н	H	н	L.	H	H
L	н	H	L	L	H	н	н	н	H	н	н	L	н
н	н	H	L	0	H	H	H	н	H	H	н	н	L.
x	x	×	L	L	L	14	. 14	H	H	H	H	н	н
×	x	×	H	L	L	H	н	н	н	н	н	н	H
×	x	×	L	н	L	H	н	н	н	н	н	н	н
х	×	×	H	н	L	H	H	н	H	н	н	H	н
×	x	x	H	L	н	H	н	н	H	н	н	H	н
×	×	×	L	H	н	н	H.	H	н	н	H	H	H
×	x	×	H	H	H	H	H	H	н	H	H	H	- 64

Figure 1. Logic Symbol

An 8205 it's a binary decoder (high speed 1 out of 8 binary decoder), it have 3 enable (E1, E2, E3), to enable this decoder, the E1, 2 must be low and E3 must be high. The active output pin of this decoder is low.

Ex: determine the address of the control/status, I/O ports and timer register in the following fig.?

Ex: design (draw) and determine the address of the control/status, I/O ports and timer register of the 8155 if the output of decoder O2?

Application design with 8155:

- Interfacing 8155 with 8085.
- Programming 8155.

Ex: design a full system contains microprocessor and 8155 and I/O device with its connections and shows how can any output of the decoder active the interfacing proses by using 8205?

What type of Commands can be given to 8155?

- To configure the I/O ports as Input or Output.
- To start/stop timer.
- To use handshake mode or not.

Programming 8155:

- 8155 is a Programmable Peripheral Interface.
- 8085 can send data to 8155 using data bus.
- This data can be:-
 - For I/O devices connected to 8155.

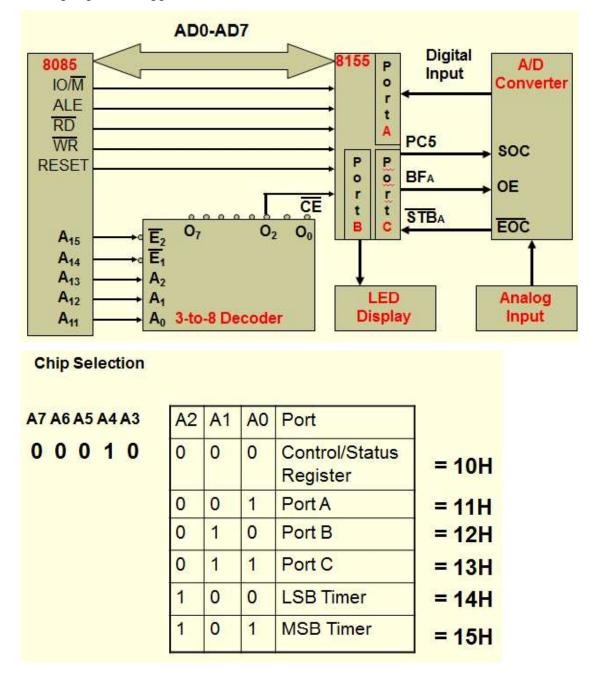
- Timer registers of 8155.
- o Instruction/Command word for 8155.
- Commands for 8155 are stored in an 8-bit Control Register inside 8155.

Control word for 8155:-

- A command/instruction for 8155 is also called control word.
- This control word is written to control register of 8155.
- Control word of 8155 is of 8-bits.

Control word (command reg) format

D0	Port A) 0, Input	D3	D2	PORTC
D1	1 Output	0	0	ALT1
	Port B	0	1	ALT2
D2		1	0	ALT3
D3	Port C	1	1	ALT4
D4	Interrupt Enable Port A 0, Disable	D7	D 6	Timer
D5		0	0	NOP
05	Interrupt Enable Port B 1, Enable	0	1	Stop
D6	2	1	0	Stop after TC
D7	Timer			alleric


- 00: No effect
- 01: Stop if running else no effect
- 10: Stop after terminal count (TC) if running, else no effect
- 11: Start if not running.

I/O functions of Port C

ALT	D3	D2	PC5	PC4	PC3	PC2	PC1	PC0
ALT1	0	0	1	1	J	1	1	1
ALT2	0	1	0	0	0	0	0	0
ALT3	1	0	0	0	0	STB A	BFA	INTRA
ALT4	1	1	STB _B	BFB	INTR	STBA	BFA	INTRA

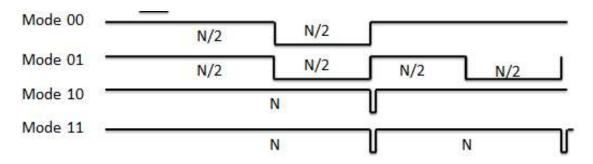
I = Input	O = Output
-----------	------------

Ex: Design an interfacing circuit to read data from an A/D converter using the 8155A in the peripheral mapped I/O.

8155: Timers

The 8155 timer consists of two 8-bit registers, 8-bit LSB and 8-bit MSB. In these 16 bits, 14 bits are used for counter and two bit for mode selection. The counter is a 14 bit down counter. It can operate in 4 different modes of operation. We can select mode using two bits M2 and M1:

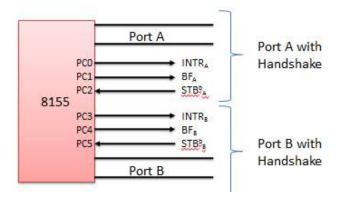
• 00(Mode 0) Single Square Wave.


- 01(Mode 1) Square Wave.
- 10(Mode 2) Single Pulse on TC (terminal count).
- 11(Mode 3) Pulse every TC.

Mode 0: In this mode, timer gives only one cycle of square wave, the output remains high for 1/2 count and remains low for 1/2 count (N is the count value).

Mode 1: This mode is similar to single square wave in operation but the when counter becomes zero, the count value is automatically reloaded. Thus it provides continuous square wave.

Mode 2: This mode gives a single clock pulse as an output of the end of the count the output is high normally, but it becomes low for 1 clock pulse and again it will become high and remain high.


Mode 3: This mode is similar to mode 2 but when the counter becomes zero the count value is automatically reloaded. Thus it provides continuous pulses.

The 8155 I/O ports in handshake mode:

Two I/O port of 8155 (A, B) can be configured in the handshake mode, each uses there signals from port C as a control signal.

When port A configured in the handshake mode, it will uses the lower 3 signals of port C, PC0, PC1, PC2. When port B configured in the handshake mode, it will uses the upper 3 signals of port C, PC3, PC4, PC5.

The function of these signals as follows:

- STB (strobe): this is input handshake signal from peripheral to 8155.
- BF (buffer full): this is indicating the presence of the data byte in the port.
- INTR (interrupt request): this signal used to interrupt the MPU.
- INTE (interrupt enable): used to disable or enable the interrupt capability of the 8155.

Status word:

- MPU check the status Reg of port or timer.
- Control register & Status register have same port.
- Differentiated by RD and WR signals.

Status word (Status reg) format:

D7	D6	D5	D4	D3	D2	D1	D0
X	Timer	INTEb	BFb	INTRb	INTAa	BFa	INTRa