

Al-Mustaqbal University College Department of Radiation Techniques
General Physics
Lecture 3 and 4:
Mechanics and Newton s Laws of Motion first stage
by
Assistant lecturer
Ansam Fadil Ali Showard
2022-2023

Mechanics:

it is a science interested with the motion of bodies under the action of forces.

Velocity (${ }_{V}^{\llcorner }$):
is vector of displacement that an object (particle or body) through the time, (also known as speed), the unit of velocity is the meter per second $(\mathrm{m} / \mathrm{s})$ or centimeter per second $(\mathrm{cm} / \mathrm{s})$, it is a vector quantity.

Speed (S):

Define it as velocity but no need to mention direction. Because it is a scalar quantity. Also, it is limited to distance, not displacement.

H.W.// What's the Difference Between Speed and Velocity?

Newton's laws of motion:

1- Newton's First Law:

states that "an object at rest will remain at rest and an object in motion will remain in motion with a constant velocity unless external force acted on it".

2- Newton's Second Law:

states that "the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass".

$$
\overrightarrow{\mathbf{a}} \propto \frac{\sum \overrightarrow{\mathbf{F}}}{m} \rightarrow \sum \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}
$$

$$
\sum \vec{F} \text { is the net force. May also be called the total force }
$$

3- Newton's Third Law:
states that "For every action there is a reaction, an equal to it in magnitude and opposite in direction.

1. Newton's First Law of Motion (Inertia)	An object at rest remains at rest, and an object in motion remains in motion at constant speed and in a straight line unless acted on by an unbalanced force		
2. Newton's Second Law of Motion	The acceleration of an object depends on the mass of the object and the amount of force applied.		
(Force)			3. Newton's Third
:---:	:---		
Law of Motion			
(Action \& Reaction)	\quad	Whenever one object exerts a force on another	
:---			
object, the second object exerts an equal and			
opposite force on the first.			

What is the force formula?

Force: equal to mass multiplied by acceleration.

$$
\mathbf{F}=\mathbf{m} \cdot \mathbf{a}
$$

Where:
$\mathrm{m}=$ mass
$\mathrm{a}=$ acceleration a is given by: $\mathrm{a}=\Delta \mathrm{v} / \Delta \mathrm{t}$
$\mathrm{v}=$ velocity
$\mathrm{t}=$ time taken
So: Force can be expressed as:

$$
F=m \cdot \Delta v / \Delta t
$$

Q.1) How much net force is required to accelerate a 1000 kg car at 4 $\mathrm{m} / \mathrm{s}^{2}$?

Solution:
$\mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2}$, and $\mathrm{m}=1000 \mathrm{~kg}$
Therefore:
$\mathrm{F}=\mathrm{ma}=1000 \times 4=4000 \mathrm{~N}$
Q.2) A hammer having a mass of 1 kg going with a speed of $\mathbf{~ m} / \mathrm{s}$ hits a wall and comes to rest in 0.1 sec . Compute the obstacle force that makes the hammer stop?

Solution:
Mass of Hammer $\mathrm{m}=1 \mathrm{~kg}$, and Initial Velocity, $\mathrm{u}=6 \mathrm{~m} / \mathrm{s}$, and Final Velocity $\mathrm{v}=0 \mathrm{~m} / \mathrm{s}$, and Time Taken $\mathrm{t}=0.1 \mathrm{~s}$, and The acceleration is: $\mathrm{a}=$ $\Delta \mathrm{v} / \Delta \mathrm{t}=(\mathrm{vf}-\mathrm{vi}) / \mathrm{t}$

Therefore, $a=-60 \mathrm{~m} / \mathrm{s}^{2}$
Thus, the retarding Force $\mathrm{F}=\mathrm{ma}=1 \times 60=60 \mathrm{~N}$
Q.3) A 60 Kg person walking at $1 \mathrm{~m} / \mathrm{sec}$ bumps into a wall and stops in about 0.05 Sec . what is the force?

Sol.
$\mathrm{F}=\mathrm{ma}=\mathrm{m} \Delta \mathrm{v} / \Delta \mathrm{t}$
$\Delta(\mathrm{mv})=(60 \mathrm{Kg})(1 \mathrm{~m} / \mathrm{sec})-(60 \mathrm{Kg})(0 \mathrm{~m} / \mathrm{sec})=60 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$
the force developed on impact is
$\mathrm{F}=\Delta(\mathrm{mv}) / \Delta \mathrm{t}=60 \mathrm{Kg} \mathrm{m} / \mathrm{sec} / 0.05 \mathrm{sec}=1200 \mathrm{Kg} \mathrm{m} / \mathrm{sec}^{2}$
$\mathrm{F}=1200$ Newton

Gravitational Force:

is the force that the earth exerts on an object. This force is directed toward the center of the earth,
gravity $=$ Earth's surface the acceleration $=$ about 9.8 meters per second

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}_{g}=m \overrightarrow{\mathbf{g}} \\
\mathbf{F}=\frac{\mathbf{G M} \mathbf{m}}{\boldsymbol{r}^{2}}
\end{gathered}
$$

This equation describes the force between any two objects in the universe:

In the equation:

- F is the force of gravity (measured in Newtons, N)
- G is the gravitational constant of the universe and is always the same number
- M is the mass of one object (measured in kilograms, kg)
- m is the mass of the other object (measured in kilograms, kg)
- r is the distance those objects are apart (measured in meters, m)

So if you know how massive two objects are and how far they are apart, you can figure out the force between them.

Additional Activities

Practice Questions (You May Use a Calculator)

Using Newton's Universal Law of Gravitation and the gravitational constant $\mathrm{G}=6.67 \times 10^{\wedge}(-11)$ please answer the following questions:

1. Find the force between the earth and sun, given the mass of the earth, is $6 \times 10^{\wedge}(24) \mathrm{kg}$ and the mass of the sun is $2 \times 10^{\wedge}(30)$. The distance between the earth and the sun is $1.5 \times 10^{\wedge}(11) \mathrm{m}$.
2. Find the approximate distance between the earth and the planet Mars given the force between the two planets is $10^{\wedge}(16)$ Newtons (N). Also, the mass of the earth can be used from question 1 above, while the mass of Mars is $6.4 \times 10^{\wedge}(23) \mathrm{kg}$.

Answers

1. From the question we have mass of the earth $\mathrm{m} 1=6 \times 10^{\wedge}(24) \mathrm{kg}$, mass of the sun $\mathrm{m} 2=2 \times 10^{\wedge}(30) \mathrm{kg}$ and distance between the two bodies is $r=1.5 \times 10^{\wedge}(11) \mathrm{m}$. Then using Newton's Law we have the force as follows:

$$
\begin{gathered}
F=\frac{G \times m_{1} \times m_{2}}{r^{2}} \\
=\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 2 \times 10^{30}}{\left(1.5 \times 10^{11}\right)^{2}}=3.6 \times 10^{22} \mathrm{~N}
\end{gathered}
$$

2. Again using Newton's Law, with $F=10^{\wedge}(16) \mathrm{N}$, mass of earth $\mathrm{m} 1=6 \times 10^{\wedge}(24) \mathrm{kg}$ and mass of Mars $\mathrm{m} 2=6.4 \times 10^{\wedge}(23) \mathrm{kg}$, we use the formula from part 1 above to get us

$$
10^{16}=\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 6.4 \times 10^{23}}{r^{2}}
$$

Using cross multiplication and taking square roots of both sides yields

$$
r^{2}=\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 6.4 \times 10^{23}}{10^{16}}=2.56 \times 10^{22}
$$

or
$r=1.6 \times 10^{\wedge}(11) \mathrm{m}$.
So the distance between the two planets is $1.6 \times 10^{\wedge}(11) \mathrm{m}$.

