

Al-Mustaqbal University College Department of Radiation Techniques

General Physics

Lecture 3 and 4:

Mechanics and Newton s Laws of Motion

first stage

by

Assistant lecturer

Ansam Fadil Ali Showard

2022-2023

Mechanics:

it is a science interested with the motion of bodies under the action of forces.

Velocity (v^2) :

is vector of displacement that an object (particle or body) through the time, (also known as speed), the unit of velocity is the meter per second (m/s) or centimeter per second (cm/s), it is a vector quantity.

Speed (S):

Define it as velocity but no need to mention direction. Because it is a scalar quantity. Also, it is limited to distance, not displacement.

H.W.// What's the Difference Between Speed and Velocity?

8666666666

Newton's laws of motion:

1- Newton's First Law:

states that "an object at rest will remain at rest and an object in motion will remain in motion with a constant velocity unless external force acted on it".

2- Newton's Second Law:

states that "the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass".

$$\vec{\mathbf{a}} \propto \frac{\sum \vec{\mathbf{F}}}{m} \rightarrow \sum \vec{\mathbf{F}} = m\vec{\mathbf{a}}$$

 $\sum \vec{\mathbf{F}}$ is the net force. May also be called the total force.

3- Newton's Third Law:

states that "For every action there is a reaction, an equal to it in magnitude and opposite in direction.

1. Newton's First Law of Motion	An object at rest remains at rest, and an object in motion remains in motion at constant speed and
(Inertia)	in a straight line unless acted on by an
	unbalanced force
2. Newton's	The acceleration of an object depends on the
Second Law of	mass of the object and the amount of force
Motion	applied.
(Force)	
3. Newton's Third	Whenever one object exerts a force on another
Law of Motion	object, the second object exerts an equal and
(Action & Reaction)	opposite force on the first.

What is the force formula?

Force: equal to mass multiplied by acceleration.

Where:

m = mass

a = acceleration a is given by: $a = \Delta v / \Delta t$

v = velocity

t = time taken

So: Force can be expressed as:

$\mathbf{F} = \mathbf{m} \cdot \Delta \mathbf{v} / \Delta t$

Q.1) How much net force is required to accelerate a 1000 kg car at 4 m/s²?

Solution:

 $a = 4 m/s^2$, and m = 1000 kg

Therefore:

 $F = ma = 1000 \times 4 = 4000 N$

Q.2) A hammer having a mass of 1 kg going with a speed of 6 m/s hits a wall and comes to rest in 0.1 sec. Compute the obstacle force that makes the hammer stop?

Solution:

Mass of Hammer m = 1 kg, and Initial Velocity, u = 6 m/s, and Final Velocity v = 0 m/s, and Time Taken t = 0.1 s, and The acceleration is: a = $\Delta v / \Delta t = (vf - vi)/t$

Therefore, $a = -60 \text{ m/s}^2$

Thus, the retarding Force $F = ma = 1 \times 60 = 60 N$

Q.3) A 60 Kg person walking at 1 m/sec bumps into a wall and stops in about 0.05 Sec. what is the force⁹

Sol.

 $F = ma = m\Delta v / \Delta t$

$$\Delta(mv) = (60 \text{ Kg}) (1 \text{ m/sec}) - (60 \text{ Kg}) (0 \text{ m/sec}) = 60 \text{ Kg m/sec}$$

the force developed on impact is

 $F = \Delta (mv)/\Delta t = 60 \text{Kg m/sec} / 0.05 \text{ sec} = 1200 \text{ Kg m/sec}^2$

F = 1200 Newton

Gravitational Force:

is the force that the earth exerts on an object. This force is directed toward the center of the earth,

gravity = Earth's surface the acceleration = about 9.8 meters per second

$$\vec{F}_g = m\vec{g}$$
$$F = \frac{GM m}{M}$$

This equation describes the force between any two objects in the universe:

In the equation:

- F is the force of gravity (measured in Newtons, N)
- G is the gravitational constant of the universe and is always the same number
- M is the mass of one object (measured in kilograms, kg)
- m is the mass of the other object (measured in kilograms, kg)
- r is the distance those objects are apart (measured in meters, m)

questions: Answers

So if you know how massive two objects are and how far they are apart, you can figure out the force between them.

Additional Activities

Practice Questions (You May Use a Calculator)

Using Newton's Universal Law of Gravitation and the gravitational constant G = 6.67 x 10^(-11) please answer the following

1. Find the force between the earth and sun, given the mass of the earth, is $6 \times 10^{(24)}$ kg and the mass of the sun is $2 \times 10^{(30)}$. The distance between the earth and the sun is 1.5 x 10⁽¹¹⁾ m.

2. Find the approximate distance between the earth and the planet Mars given the force between the two planets is 10^(16) Newtons (N). Also, the mass of the earth can be used from question 1 above, while the mass of Mars is 6.4 x 10⁽²³⁾ kg.

1. From the question we have mass of the earth m1 = $6 \times 10^{(24)}$ kg, mass of the sun m2 = $2 \times 10^{(30)}$ kg and distance between the two bodies is r = 1.5 x 10⁽¹¹⁾ m. Then using Newton's Law we have the force as follows:

$$F = \frac{G \times m_1 \times m_2}{r^2}$$

$$=\frac{6.67\times10^{-11}\times6\times10^{24}\times2\times10^{30}}{\left(1.5\times10^{11}\right)^2}=3.6\times10^{22} \text{ N}$$

2. Again using Newton's Law, with $F = 10^{(16)}$ N, mass of earth m1 = 6 x 10^{(24)} kg and mass of Mars m2 = 6.4 x 10^{(23)} kg, we use the formula from part 1 above to get us

$$10^{16} = \frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 6.4 \times 10^{23}}{r^2}$$

Using cross multiplication and taking square roots of both sides yields

$$r^{2} = \frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 6.4 \times 10^{23}}{10^{16}} = 2.56 \times 10^{22}$$

or

r = 1.6 x 10^(11) m.

So the distance between the two planets is 1.6 x 10⁽¹¹⁾ m.