Ex 1: for the simple truss shown in fig. find the axial force in bars $\mathrm{CD}, \mathrm{DE}, \mathrm{CE}$ \& BE.

Solution:
Due to symmetry of loading and distances
Dy $=\mathrm{Ay}=10 \mathrm{kN} \uparrow$
$\mathrm{Ax}=0$
$\mathrm{FB}=\mathrm{GC}=\mathrm{HD}=\mathrm{HG}=\mathrm{GF}=\mathrm{FE}=\mathrm{AB}=0$
For CD \& DE use joint D

$$
\begin{aligned}
& \uparrow \sum f_{y}=0 \\
& 10-E D * \frac{1}{\sqrt{5}}=0=>E D=10 \sqrt{5} \mathrm{kN} \text { (Comp.) }
\end{aligned}
$$

10 kN

$$
\begin{aligned}
\rightarrow & \sum \mathrm{f}_{\mathrm{X}}=0 \\
& 10 \sqrt{5} * \frac{2}{\sqrt{5}}-\mathrm{CD}=0=>\mathrm{CD}=20 \mathrm{kN}(\text { Ten. })
\end{aligned}
$$

For CE use joint C
$\uparrow \sum \mathrm{f}_{\mathrm{y}}=0$
CE $* \frac{3}{5}-10=0=>C E=16.67 \mathrm{kN}$ (Ten.)

For BE use joint B

$$
\begin{aligned}
& \uparrow \sum \mathrm{f}_{\mathrm{y}}=0 \\
& \mathrm{BE} * \frac{3}{\sqrt{13}}-10=0=>\mathrm{BE}=12 \mathrm{kN} \text { (Ten.) }
\end{aligned}
$$

Ex2: For the simple truss shown in fig. find the axial force in bars AC, AD \& AJ.

Solution:
Due to symmetry of loading and distances
$\mathrm{Ay}=\mathrm{Gy}=10 \mathrm{kN} \uparrow$
$\mathrm{Ax}=0$
$B C, B A, F E, F G \& D I=0$
Use joint J
$\uparrow \Sigma \mathrm{f}_{\mathrm{y}}=0$
$\mathrm{JC}-10=0=>\mathrm{JC}=10 \mathrm{kN}$ (ten.)

Use joint C

$$
\begin{aligned}
& \uparrow \sum \mathrm{f}_{\mathrm{y}}=0 \\
& \mathrm{AC} * \frac{3}{\sqrt{13}}-10=0=>\mathrm{AC}=12.018 \mathrm{kN} \text { (Comp.) } \\
& \text { Use joint } \mathrm{A} \\
& \uparrow \sum \mathrm{f}_{\mathrm{y}}=0 \\
& 10-\mathrm{AC} * \frac{3}{\sqrt{13}}+\mathrm{AD} * \frac{3}{5}=0 \\
& 10-12.018 * \frac{3}{\sqrt{13}}+\mathrm{AD} * \frac{3}{5}=0 \\
& \mathrm{AD}=0 \\
& \mathrm{AJ}-\mathrm{AC} * \frac{2}{\sqrt{13}}=0 \\
& \mathrm{AJ}-12.018 * \frac{2}{\sqrt{13}}=0 \\
& \mathrm{AJ}=6.67 \mathrm{kN}(\mathrm{Ten.})
\end{aligned}
$$

H.W1 :For the simple truss shown in fig. find the axial force in bars AB, AF,ED $\& C D$.

H.W2 : For the simple truss shown in fig. find the axial force in bars $A B$, AF,AE, BC \& CD.

Ex3: For the simple truss shown in fig. find the axial force in bars HD \& HJ.

Solution
$\sum M_{a}=0$
(hy *8) $-(10 * 4)=0=>$ hy $=5 \mathrm{kN}$
$\uparrow \sum \mathrm{f}_{\mathrm{y}}=0$
ay $-10-5=0=>$ ay $=15 \mathrm{kN}$
ca, eh, fh, fe \& ed = 0
For hd \& hj use joint h

$$
\uparrow \sum \mathrm{f}_{\mathrm{y}}=0
$$

$$
\mathrm{hd} * \frac{3}{\sqrt{13}}+\mathrm{hj} * \frac{3}{5}=5 \ldots \ldots \ldots \ldots \ldots 1
$$

$\rightarrow \sum \mathrm{f}_{\mathrm{X}}=0$
$-\mathrm{hd} * \frac{2}{\sqrt{13}}-\mathrm{hj} * \frac{4}{5}=0$
$h d=-\frac{\sqrt{13}}{2} * \frac{4}{5} * \mathrm{hj}$ \qquad
Sub equation 2 in equation 1

$$
\begin{aligned}
& \left(-\frac{\sqrt{13}}{2} * \frac{4}{5} * \mathrm{hj}\right) * \frac{3}{\sqrt{13}}+\left(\mathrm{hj} * \frac{3}{5}\right)=5 \\
& \mathrm{hj}=-8.34 \mathrm{kN}=8.34 \mathrm{kN}(\text { Comp. }) \\
& \left.\mathrm{hd}=-\frac{\sqrt{13}}{2} * \frac{4}{5} *(-8.34)=12 \mathrm{kN} \text { (Ten. }\right)
\end{aligned}
$$

H.W: For the same example find axial force in bars aj \& ad

