Ex 6 Analysis the truss shown in fig. finds all bars forces.

Solution procedure
1- Assume the force in any bar for example (ad) and equal (R) in tension
2- Calculate the force in another bar for example (ab) in term of (R) by following two paths.
a) First path: (joint d), (joint c) \& (joint b). By applying equilibrium equations we find the force in bar (ad) in term of (R).
b) Second path: (joint a), from it we find the value of force in the bar (ab) in term of (R).
3- We equal the forces outputs in bar (ab) which Obtained from the two paths, we solve the equation to find the value of (R).
4- All the forces of the bars can now be calculated after identifying the value of (R).

Solution:
$\sum M_{A}=0 \Rightarrow$ fy $=42 \mathrm{kN} \uparrow$
$\sum F_{y}=0 \Rightarrow$ ay $=18 \mathrm{kN} \uparrow$
$\sum F_{x}=0 \Rightarrow \mathrm{ax}=30 \mathrm{kN} \leftarrow$
Let force in bar $\mathrm{ad}=\mathrm{R}$ (tension)

Use joint d

$$
\begin{align*}
& \uparrow \sum F_{y}=0 \\
& e d * \frac{1}{\sqrt{2}}-10-0.6 R=0 \\
& e d=\sqrt{2}(10+0.6 R) \\
& \rightarrow \sum F_{x}=0 \\
& d-0.8 R-\sqrt{2}(10+0.6 R) * \frac{1}{\sqrt{2}}=0 \\
& c d=10+1.4 R \\
& \text { Use joint } \mathrm{c} \\
& \begin{array}{l}
\sum F_{y}=0 \\
b c * \frac{1}{\sqrt{2}}+c f * \frac{3}{5}-10=0 \\
\\
\quad \sum F_{x}=0 \\
\left.b c * \frac{1}{\sqrt{2}}-c f * \frac{4}{5}-10-0.6 c f\right) \ldots \ldots \ldots \ldots 1 \\
\text { Sub equation } 1 \text { in equation } 2 \\
\left(\sqrt{2}(10-0.6 c f) * \frac{1}{\sqrt{2}}\right)-\left(c f * \frac{4}{5}\right)-10 \\
c f=-R \\
b c=\sqrt{2}(10-0.6 *(-R)) \\
b c=\sqrt{2}(10+0.6 R)
\end{array}
\end{align*}
$$

Use joint b

$$
\begin{aligned}
& \rightarrow \sum F_{x}=0, \Rightarrow>30-10-0.6 R+b g * \frac{5}{\sqrt{41}}=0 \\
& \quad b g=\frac{\sqrt{41}}{5}(0.6 R-20) \\
& \uparrow \sum F_{y}=0 \\
& \quad a b-10-0.6 R-(0.6 R-20) * \frac{\sqrt{41}}{5} * \frac{4}{\sqrt{41}}=0 \\
& \quad a b=-6+1.08 R
\end{aligned}
$$

Use joint a

$$
\rightarrow \sum F_{x}=0
$$

$$
\mathrm{ag}+0.8 \mathrm{R}-30=0
$$

$$
\mathrm{ag}=30-0.8 \mathrm{R}
$$

$$
\sum F_{y}=0
$$

$$
18+0.6 R=-6+1.08 R
$$

$$
\mathrm{R}=50 \mathrm{kN} \text { (ten.) }
$$

$$
\mathrm{ad}=50 \mathrm{kN} \text { (ten.) }
$$

$$
\mathrm{ab}=-6+(1.08 * 50)=-48=48 \mathrm{kN} \text { (comp.) }
$$

18
$\mathrm{cd}=10+1.4 * 50=80 \mathrm{kN}$ (ten.)
$b g=\frac{\sqrt{41}}{5}(0.6 * 50-20) \Rightarrow b g=2 \sqrt{41} \mathrm{kN}$ (ten.)
$\mathrm{ag}=30-0.8 * 50=10 \mathrm{kN}$ (ten.)
$\mathrm{cf}=-\mathrm{R}=-50=50 \mathrm{kN}$ (comp.)
$b c=\sqrt{2}(10+0.6 * 50)=>b c=40 \sqrt{2} \mathrm{kN}$ (comp.)

Ex 7: Analysis the truss shown in fig.
1- classify the truss
2- find the force in bar AD.

Sol:
Section 1 ------ 1
$\sum M_{o}=0$
$(50 * 4)+\left(\mathrm{CD} * \frac{4}{5} * 4.5\right)-\left(G E * \frac{2}{\sqrt{5}} * 3.5\right)=0$ \qquad

Joint C as F.B.D

$$
\rightarrow \sum F_{x}=0
$$

$\mathrm{CD} * \frac{4}{5}-B C * \frac{4}{5}=0$
$\mathrm{CD}=\mathrm{BC}$
$\uparrow \sum F_{y}=0$
$100+2 * \mathrm{CD} * \frac{3}{5}=C G$

(Joint G) as F.B.D

Asist Lecture: Alaa Hussein Ali
AL- Mustaqbal University
$\rightarrow \sum F_{x}=0$

$$
\begin{aligned}
& \mathrm{GE} * \frac{2}{\sqrt{5}}-A G * \frac{2}{\sqrt{5}}=0 \\
& \mathrm{GE}=\mathrm{AG} \\
& \uparrow \sum F_{y}=0 \\
& \mathrm{CG}=2 \mathrm{GE} * \frac{1}{\sqrt{5}} \ldots \ldots \ldots 3
\end{aligned}
$$

From equation $2 \& 3$

$$
100+2 * \mathrm{CD} * \frac{3}{5}=2 \mathrm{GE} * \frac{1}{\sqrt{5}} \ldots \ldots \ldots 4
$$

Solve equation $1 \&$ equation 4 similary to find
$\mathrm{Cd}=-249.6 \mathrm{kN}$ (Comp.)
$\mathrm{GE}=-223.2 \mathrm{kN}$ (Comp.)
Use joint D
$\rightarrow \sum F_{x}=0$
$\mathrm{AD} * \frac{8}{\sqrt{73}}+249.6 * \frac{4}{5}=0$
$\mathrm{AD}=-213.76 \mathrm{kN}=213.76 \mathrm{kN}$ (Ten.)

