Second stage
Medical Physical Department

Digital Electronics

Lab 4 : Boolean expression

By

Asst. Prof. Dr. Mehdi Ebady Manaa

Boolean expression

Objectives

- To learn how to directly convert a Boolean expression to circuit.
- To learn how to analyze a given digital logic circuit by finding the Boolean expression thatrepresents the circuit
- To learn how to analyze a given digital logic circuit by finding the truth table that represents thecircuit.

Example:

$$
Z=A+B \cdot C^{\prime}
$$

The above function is implemented in the following digital logic Circuit

Now after drawing the circuit above using EWB we find that its truth table is as shown below (notice thatlogic 1 means connect the input to the Vcc line, and logic $\mathbf{0}$ means connecting the input to the ground)

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Z}
$\mathbf{0}$	0	0	$\mathbf{0}$
$\mathbf{0}$	0	1	$\mathbf{0}$
$\mathbf{0}$	1	0	$\mathbf{1}$
$\mathbf{0}$	1	1	$\mathbf{0}$
$\mathbf{1}$	0	0	$\mathbf{1}$
$\mathbf{1}$	0	1	$\mathbf{1}$
$\mathbf{1}$	1	0	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Lab Tasks

Task 1: Converting Boolean expressions into circuits

Convert the following Boolean expression to a circuit, draw the circuit on EWB and simulate it to fill-in its truth table shown below.

$$
X=Y+Z . Y^{\prime}
$$

Draw the circuit in the space below

Now, fill-in the truth table of the circuit you drawn

\mathbf{Y}	\mathbf{Z}	\mathbf{X}
$\mathbf{0}$	0	
$\mathbf{0}$	1	
$\mathbf{1}$	0	
$\mathbf{1}$	$\mathbf{1}$	

Task 2: Converting Boolean expressions into circuits
Convert the following Boolean expression to a circuit, draw the circuit on EWB and simulate it to fill-in itstruth table shown below.

> A

日

A	B	C	D
$\mathbf{0}$	0	0	
$\mathbf{0}$	0	1	
$\mathbf{0}$	1	0	
$\mathbf{0}$	1	$\mathbf{1}$	

$\mathbf{1}$	0	0	
$\mathbf{1}$	0	1	
1	1	0	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	

Task 3: Digital logic circuit analysis - Finding the Boolean expression of a given circuit

Find the Boolean expression of the following circuit, draw the circuit on EWB and simulate it to fill-in its truth table shown below.
$\mathrm{W}=$

Note: the logic converter tool from EWB to fill-in the following table. For that, you need to connect the A, B and C inputs of the logic converter to X, Y and Z lines, respectively. Further, you need to connect the 'out' line of the logic converter to W . As shown in the following diagram

\mathbf{X}	Y	Z	W
$\mathbf{0}$	0	$\mathbf{0}$	
$\mathbf{0}$	0	1	
$\mathbf{0}$	1	0	
$\mathbf{0}$	1	1	
$\mathbf{1}$	0	0	
$\mathbf{1}$	0	$\mathbf{1}$	
$\mathbf{1}$	1	0	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	

