Lab 2

Second stage
Medical Physical Department

Digital Electronics

Lab2: Basic logic Gates (AND, OR, and NOT gates)

By
Asst. Prof. Dr. Mehdi Ebady Manaa

Basic logic Gates (AND, OR, and NOT gates)

Objectives

1- To study and understand the 3
basic gates.2- Implement the basic
gate in EWB.
3- The study the specifications of every gate when connected it with one input constant and tt other isvariable.

1. AND and NAND gates

This gate gives high output (1) if all the inputs are 1's. otherwise the output will be low (0).
Its Boolean algebra representation is: $\mathbf{C = A . B}$
And it's truth table and schema as following:

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	0
0	1	0
1	0	0
1	1	1

The NAND gate works opposite to the AND gate. Its Boolean algebra representation is: $\mathbf{C}=(\mathbf{A . B})$ ' And it's truth table and schema as following:

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	1
0	1	1
1	0	1
1	1	0

2. OR and NOR gates

This circuit will give high output (1) if any input is high (1).
Its Boolean algebra representation is: $\quad \mathrm{C}=\mathrm{A}+\mathrm{B}$
and it's truth table and schema as following:

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	0
0	1	1
1	0	1
1	1	1

The NOR gate works opposite to the OR gate. Its Boolean algebra representation is:
$\mathbf{C}=(\mathbf{A}+\mathbf{B})$ ' And it's truth table and schema as following:

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	1
0	1	0
1	0	0
1	1	0

3. NOT gate

This is the simplest gate it just inverts the input, if the input is high the output will be low and conversely.

So $\mathrm{B}=\mathrm{A}^{\prime}$

\mathbf{A}	\mathbf{B}
0	1
1	0

4. Lab Tasks

Task 1: The AND and NAND gates
In EWB, draw the following two circuits and fill the truth table below

$+V \mathrm{Vc}$
 $\xrightarrow[-]{1}$

A	B	A.B	(A.B)'
0	0		
0	1		
1	0		
1	1		

$+\frac{V C c}{1}$ $\stackrel{1}{-}$

Task 2: The AND-NOT combination
In EWB, draw the following circuit and fill the truth table

$+\frac{V / c}{1}$
$\frac{1}{-}$

A	B	(A.B)'
0	0	
0	1	
1	0	
1	1	

Task 3: The OR and NOR gates
In EWB, draw the following two circuits and fill the truth table below

$\frac{+V / c}{1}$
\qquad

Task 4: The NOR-NOT combination

A	B	$\left((\mathrm{A}+\mathrm{B})^{\prime}\right)^{\prime}$
0	0	
0	1	
1	0	
1	1	

Task 5: Finding the truth table of a three input gate using the logic converter
Repeat what you did in task 5 for a three-input AND gate. Show your connections in the circuit below. Note: you can obtain a three-input AND gate by drawing a regular two-input AND gate and then changingits Number of Inputs property as shown next.

\mathbf{A}	B	C	D
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

