Logic Gate

College of Engineering \& Technology University

Level 1 , Semester 1
@ Department of prosthetic and orthotic Engineering
Prepared by
Dr. Samir Badrawi

Arithmetic Operations \& Boolean Algebra

The majority of this course material is based on
Fundamentals of Electric Circuits - presentations.
Charles K. Alexander |Matthew n. o. Sadiku, $5^{\text {TH }}$ edition © 2013 McGraw-Hill

Analog signal is time-varying and generally bound to a range (e.g. +12 V to -12 V , if we are talking about voltage signal), but there is an infinite number of values within that continuous range.

Analog signal -

In Digital Electronic Devices, signals which can have just two voltage values (two states): HIGH Voltage or LOW Voltage ... (true or false ... 0 or 1).

Digital Waveforms

Digital waveforms change between the LOW and HIGH levels. A positive going pulse is one that goes from a normally LOW logic level to a HIGH level and then back again. Digital waveforms are made up of a series of pulses.

Pulse Definitions

Actual pulses are not ideal but are described by the rise time, fall time, amplitude, and other characteristics.

Periodic Pulse Waveforms

Periodic pulse waveforms are composed of pulses that repeats in a fixed interval called the period (T). The frequency is the rate it repeats and is measured in hertz.

$$
f=\frac{1}{T} \quad T=\frac{1}{f}
$$

The clock is a basic timing signal that is an example of a periodic wave.

What is the period of a repetitive wave if $f=3.2 \mathrm{GHz}$?

$$
T=\frac{1}{f}=\frac{1}{3.2 \mathrm{GHz}}=313 \mathrm{ps}
$$

Pulse Definitions

In addition to frequency and period, repetitive pulse waveforms are described by the amplitude (A), pulse width (\boldsymbol{t}_{W}) and duty cycle. Duty cycle is the ratio of t_{W} to T.

Timing Diagrams

A timing diagram is used to show the relationship between two or more digital waveforms,

Name	Graphical Symbol	Algebraic Function	Truth Table	
AND		$\begin{gathered} \mathrm{F}=\mathrm{A} \cdot \mathrm{~B} \\ \text { or } \\ \mathrm{F}=\mathrm{AB} \end{gathered}$	A B F 0 0 0 0 1 0 1 0 0 1 1 1	
OR	C	$\mathrm{F}=\mathrm{A}+\mathrm{B}$	A B F 0 0 0 0 1 1 1 0 1 1 1 1	
NOT		$\begin{gathered} \mathrm{F}=\overline{\mathrm{A}} \\ \mathrm{~F}=\mathrm{A}^{\prime} \end{gathered}$	A F 0 1 1 0	
NAND		$\mathrm{F}=\overline{\mathrm{AB}}$	A B F 0 0 1 0 1 1 1 0 1 1 1 0	A B F
NOR		$\mathrm{F}=\overline{\mathrm{A}+\mathrm{B}}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0	
XOR		$\mathrm{F}=\mathbf{A} \oplus \mathrm{B}$	A B F 0 0 0 0 1 1 1 0 1 1 1 0	

Basic Logic Gated

The NAND Gate

A Multisim circuit is shown. XWG1 is a word generator set in the count up mode. A four-channel oscilloscope monitors the inputs and output. What output signal do you expect to see?

The NAND Gate

Example waveforms:

The NAND gate is particularly useful because it is a "universal" gate - all other basic gates can be constructed from NAND gates.

How would you connect a 2 -input NAND gate to form a basic inverter?

The NOR Gate

The NOR gate produces a LOW output if any input is HIGH; if all inputs are HIGH, the output is LOW. For a 2-input gate, the truth table is

Inputs	Output
$A \quad B$	X
00	1
01	0
10	0
11	0

The NOR operation is shown with a plus sign (+) between the variables and an overbar covering them. Thus, the NOR operation is written as $X=\overline{A+B}$.

The NOR Gate

Example waveforms:

The NOR operation will produce a LOW if any input is HIGH.

Exercise:- using the following Timing Diagram, obtain the Truth Table and write the final expression of the function $(F(w, x, y, z)=\Sigma(., ., .)$,

Combinational Logic circuits

The AND, OR, NAND, NOR and NOT are the basic building blocks of digital systems. The art of digital system design is to link these building blocks together in the most effective manner to construct what is called Combinational Logic circuits . These are called combinational circuits because the output of a circuit at any given moment depends on the combination of input signals present.

74LSo8 Quad 2-input OR Gate IC Package

combinational circuits

How many inputs (i/p) and how many outputs (o/p) in the above circuit?

Algebraic Function

Boolean Function Representation

The use of switching devices like transistors give rise to use a special mathematics case called the Boolean algebra.

The principles of logic were developed by George Boole (1815-1884) who, along with Augustus De Morgan, formulated a basic set of rules that govern the relationship between the true-false statements of logic. Boole's work laid the foundation to what later became known as Boolean Algebra.

Nearly one hundred years later, Claude Shannon, an American postgraduate at Massachusetts Institute of Technology, realized that Boole's work was relevant in particular to the analysis of switching circuits in telephone exchanges and, more generally, formed a mathematical basis for the electronic processing of binary information.

Rules of Boolean Algebra

$$
\begin{array}{ll}
\text { 1. } A+0=A & \text { 7. } A \cdot A=A \\
\text { 2. } A+1=1 & \text { 8. } A \cdot \bar{A}=0 \\
\text { 3. } A \cdot 0=0 & \text { 9. } \overline{\bar{A}}=A \\
\text { 4. } A \cdot 1=\mathrm{A} & \text { 10. } A+A B=A \\
\text { 5. } A+A=A & \text { 11. } A+\bar{A} B=A+B \\
\text { 6. } A+\bar{A}=1 & \text { 12. }(A+B)(A+C)=A+B C
\end{array}
$$

DeMorgan's Theorem

DeMorgan's $1^{\text {st }}$ Theorem
The complement of a product of variables is equal to the sum of the complemented variables.

$$
\overline{A B}=\bar{A}+\bar{B}
$$

Homework (team/group work)

using Boolean algebra Rules,

1. prove :

$$
\mathrm{AB}+\mathrm{BC}+\overline{\mathrm{A}} \mathrm{C}=\mathrm{AB}+\mathrm{A} \overline{\mathrm{C}}
$$

2. Show that the function:

$$
F=A \bar{B} \bar{C}+A B \bar{C}+A \bar{B} C+A B C
$$

equals 1 when A equals 1 .

