Al-Mustaqbal University
Air conditioning and refrigeration Technical Department
$2^{\text {nd }}$ year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

Lecture fifteen

e.g.: A refrigerator producing 15 kw of refrigeration operates at an evaporator temperature of $\left(-5^{\circ} \mathrm{C}\right) \&$ condenser temperature of $\left(35^{\circ} \mathrm{C}\right)$. calculate:

Sol:

Points $1 \& 3$ from table only $\&\left(h_{3}=h_{4}\right)$.[point 2 from chart].
From table: $\mathrm{P}_{\mathrm{c}}=1355 \mathrm{kPa} \& \mathrm{P}_{\mathrm{e}}=422 \mathrm{kPa}$.
$\mathrm{h}_{1}=403.15 \mathrm{~kJ} / \mathrm{kg}$ (saturated vapour).
$\mathrm{h}_{4}=\mathrm{h}_{3}=243.1 \mathrm{~kJ} / \mathrm{kg}$ (saturated liquid).
$\mathrm{h}_{2}=434 \mathrm{~kJ} / \mathrm{kg}$ from P-h diagram.

Al-Mustaqbal University
Air conditioning and refrigeration Technical Department
$2^{\text {nd }}$ year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

To obtain $\left(h_{2}\right)$, extend the horizontal straight line at ($\mathrm{T}_{\mathrm{c}}=308^{\circ} \mathrm{K}$ or $\mathrm{P}_{\mathrm{c}}=1355 \mathrm{kPa}$) to the superheated vapour region, then locate point (1) on the saturated vapour line at intersection with line ($\mathrm{T}_{\mathrm{e}}=268^{\circ} \mathrm{K}$). Then follow the isentropic compression curve until intersecting with line ($\mathrm{T}_{\mathrm{C}}=308^{\circ} \mathrm{K}$). Locate point (2) \& read (h_{2}).
a) $\dot{m}=\frac{X}{Q_{\text {ref }}}=\frac{15}{h_{1}-h_{4}}=\frac{15}{403.15-243.1}=0.0937 \mathrm{~kg} / \mathrm{sec}$.
b) $\dot{\mathrm{v}}=\dot{m}\left(\mathrm{u}_{g}\right)_{1}=0.0937 * 55.325^{*} 10^{-3}=0.00518 \mathrm{~m}^{3} / \mathrm{sec}$., $\left[\left(\mathrm{u}_{g}\right)_{1}=55.325^{*} 10^{-3}\right.$ $\mathrm{m}^{3} / \mathrm{kg}$ from table at $\left.-5^{\circ} \mathrm{C}\right]$.
c) $\mathrm{W}=\dot{m}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)=0.0937(434-403.15)=2.89 \mathrm{kw}$.
d) $Q_{\text {out }}=\dot{m}\left(\mathrm{~h}_{2}-\mathrm{h}_{3}\right)=0.0937(434-243.1)=17.887 \mathrm{kw}$.
e) $\mathrm{f}=\frac{h_{3}-h_{l e}}{h_{1}-h_{l e}}$, saturated liquid at $-5^{\circ} \mathrm{C} \rightarrow \mathrm{h}_{\mathrm{le}}=194.15 \mathrm{~kJ} / \mathrm{kg}$.

$$
\mathrm{f}=\frac{243.1-194.15}{403.15-194.15}=0.234
$$

i.e. approximately 23% of liquid is vapourized at the expansion valve before entering the evaporator.
f) Cop $=\frac{h_{1}-h_{4}}{h_{2}-h_{1}}=\frac{403.15-243.1}{434-403.15}=5.188$
or Cop $=\frac{X}{W}=\frac{15}{2.89}=5.19$
Recall (Cop) Carnot. $=6.7$
\therefore Cop reduced in standard vap. Comp. cycle (ideal).

Al-Mustaqbal University
Air conditioning and refrigeration Technical Department
$2^{\text {nd }}$ year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

5- Refrigerant properties on a P-h diagram.

Pressure - enthalpy diagrams are the most used for refrigeration practice. They provide easier representation of the vapour-compression cycle.

Note:

1. temperature line is horizontal inside the phase envelope; vertical in subcooled region; drops to the right in superheated region.

- In subcooled region enthalpy is read at the saturation temperature regardless of pressure. i.e. The temperature determines the enthalpy and not the pressure. Thus,
$\mathrm{h}_{\text {sub cooled liquid }}=\mathrm{h}_{\text {saturated liquid at existing temp. }}$.

Al-Mustaqbal University
Air conditioning and refrigeration
Technical Department
$2^{\text {nd }}$ year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024
2. Entropy lines steep \& slope upward. Increase with increasing enthalpy \& decreasing pressure.
3. Volume lines slope slightly upward to the right, increase with decreasing pressure.
$\mathrm{S}=1 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at $0^{\circ} \mathrm{C}$.
$\mathrm{h}=200 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at $0^{\circ} \mathrm{C}$.

