
Al-Mustaqbal University
Air conditioning and refrigeration
Technical Department

2nd year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

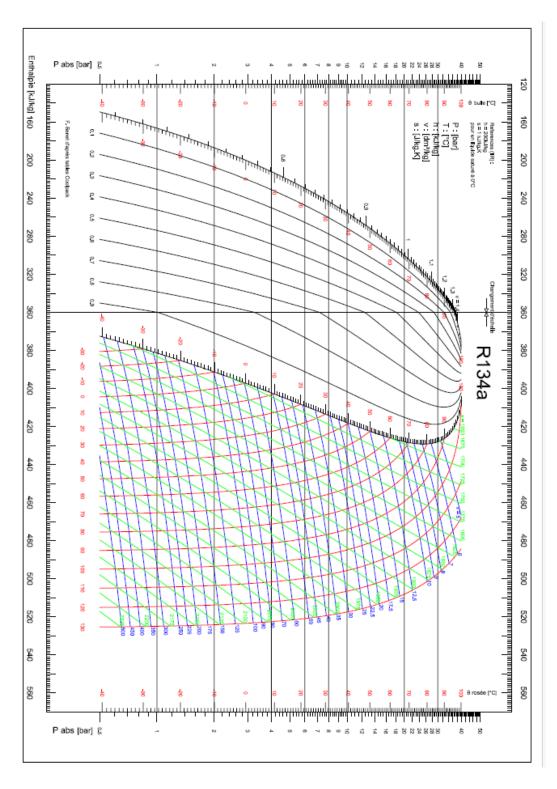
Lecture seventeen

e.g. A refrigeration cycle uses refrigerant R-134a and operates between a low-side pressure of 0.14MPa and high side pressure of 1MPa. The refrigerant mass flow rate is 0.05kg/sec. find the cooling effect, work input and cop of this machine.

Solution:

Al-Mustaqbal University Air conditioning and refrigeration Technical Department 2nd year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

From P-h diagram and table we find the enthalpies of each point as follows:


Point	P MPa	h kJ/sec
1 (table)	0.14	387
2 (chart)	1	424
3 (table)	1	256
4	0.14	256

Work unput to compressor $W_c = h_2 - h_1 = 424 - 387 = 37 \text{ kJ/kg}$. Power input to the compressor = $m (h_2 - h_1) = 0.05 (424 - 387) = 1.85 \text{kW}$. Refrigeration effect $(Q_{evap}) = h_1 - h_4 = 387 - 256 = 131 \text{ kJ/kg}$. Refrigeration effect in kW = $m (h_1 - h_4) = 0.05 (387 - 256) = 6.55 \text{ kW}$.

$$COP = \frac{Q_{evap}}{W_{comp}} = \frac{131}{37} = 3.54$$

Al-Mustaqbal University Air conditioning and refrigeration Technical Department 2nd year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

