

2nd year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

Lecture sixteen

6- Liquid subcooling and vapour superheating:

The refrigerant vapor out of the evaporator $(6\rightarrow 1)$ is used to cool the saturated liquid leaving the condenser $(3\rightarrow 4)$. Thus, liquid entering evaporator is subcooled & vapour entering the compressor is superheated.

2nd year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

Subcooled and superheated refrigeration cycle.

2nd year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

*Saturated liquid is cooled from (3 to 4) by saturated vapour which heates from (6 to 1). i.e.:

 $h_3-h_4 = h_1-h_6$ [heat exchanger only).

*refrigerating effect = h_6 - h_5 = h_1 - h_3 (for heat exchanger only).

Heat rejected at condenser = h_2 - h_3 (for heat exchanger only).

• liquid subcooling & vapour superheating can also be achieved without a heat exchanger.

Superheating is done in the evaporator by adjusting the mass flowrate, subcooling is done in the condenser by increasing heat transfer (heat rejected). Then without heat exchanger:

 $Q_{ref.} = h_1 - h_5$

 $Q_{conderser} = h_2 - h_4$

Using the heat exchanger, the refrigeration effect is improved but the compressor work is increased since $(v_1 > v_6)$. Main advantage is to ensure only vapour enters the compressor. This method is employed mainly in vapour compression machines that employ R -12 & R-22 with increased capacity.

e.g: A system using R-22 produces 15 kw of refrigeration at an evaporator temperature of -5°C and condenser temperature of 35°C. A liquid to vapour heat exchanger is used where the vapour is superheated 5°C before entering the compressor. Determine: a) piston displacement, (\dot{v}). b) Q_{cond}., c) f.

d)W if compression is isentropic. e) Cop.

Sol:

2nd year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

From tables for R-22.

h₆=403.15 kJ/kg. (Saturated vapour at -5°C).

 $P_e=422 \text{ kP}_a$. (Saturated vapour at -5°C).

 $h_3 = 243.1 \text{ kJ/kg}$. (Saturated liquid at 35°C).

P_c=1355 kP_a. (Saturated liquid at 35°C).

From chart:

 h_1 =407kJ/kg (at pe & 0°C).

 $T_A=32^{\circ}C$ (Saturated temperature at point A) [note: obtained from knowing h₄, which equal to h_f (from table)]. As follows:

 $h_1-h_6=h_3-h_4$

 $h_4 = h_3 - (h_1 - h_6) = (243.1 - (407 - 403.15) = 239.25 kJ/kg = h_5 \rightarrow t_4 = 32^{\circ}C$ (from table).

2nd year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

 $T_A=t_4=32^{\circ}C$. (Vertical temperature line 4 \rightarrow A in the subcooled region until saturation line).

a)
$$\dot{\upsilon} = \dot{m}.\upsilon_1, \ \dot{m} = \frac{X}{Q_{ref}} = \frac{15}{h_6 - h_5} = \frac{15}{(403.15 - 239.25)} = 0.0915 \text{ kg/sec.}$$

 $\upsilon_1 = 0.057 \text{ m}^3/\text{kg} \text{ from chart at point 1.} \qquad (h_5 = h_4 = 239.25 \text{ kJ/kg}).$
 $\dot{\upsilon} = \frac{X}{Q_{ref}} \upsilon_1 = \frac{15}{h_6 - h_5} * \upsilon_1 = 0.0915 * 0.057 = 0.005216 \text{ m}^3/\text{sec.}$
b) $Q_{\text{out}} = \dot{m}(h_2 - h_3)$

h₂=439 kJ/kg, from chart at point 2, (from $1\rightarrow 2$ constant entropy line).

c)
$$h_4 = h_5 = f^* h_6 + (1-f)^* h_{le}$$

 $h_{le} = 194.15 \text{ kJ/kg} \text{ (from table at -5°C)}.$
 $f = \frac{h_5 - h_{le}}{h_6 - h_{le}} \frac{239.25 - 194.15}{403.15 - 194.15} = 0.215 = 21.5\%.$

d) w=
$$\dot{m}(h_2-h_1)=0.0915*(439-407)=2.928$$
kw.

or W= Q_{out} - Q_{in} = 17.924-15 = 2.924 kw.

e) $\operatorname{Cop} = \frac{X}{W} = \frac{15}{2.924} = 5.13$ (decreased in comparation with a previous example as the work increased to pump more refrigerant).

$$\operatorname{Cop} = \frac{(h_6 - h_5)\dot{m}}{(h_2 - h_1)\dot{m}}$$