

2<sup>nd</sup> year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

## Lecture Thirteen

## Ton of refrigeration (TR)

Is the amount of heat absorbed by one U.S. ton of ice melting over a period of 24 hours.

TR = 2000 Ib \*144 Btu/Ib =12000 Btu/hr.

=12000/60 =200 Btu/min.

 $\therefore$ TR= the removal of heat at the rate of 12000 Btu/hr. or 200Btu/min.

In SI units TR=12000\*0.293=3516 watt. =3.516 kw.

e.g.: A Carnot refrigerator operates at an evaporator temperature of  $(-5^{\circ}C)$  and a condenser temperature of  $(35^{\circ}C)$ . for a refrigerating effect of 15kw calculate: a- the cop)<sub>c</sub> & cop)<sub>h</sub>. b- the W.D. and the mass flowrate of the refrigerant if the refrigerant used is R-22 (refrigerant – 22).

Sol:





2<sup>nd</sup> year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

a- Cop)<sub>c</sub> = 
$$\frac{T_e}{T_c - T_e} = \frac{273 + (-5)}{(273 + 35) - (273 + (-5))} = \frac{268}{40} = 6.7$$
  
Cop)<sub>h</sub> =Cop)<sub>c</sub> +1 = 6.7 + 1 = 7.7  
Or Cop)<sub>h</sub> =  $\frac{T_c}{T_c - T_e} = \frac{273 + 35}{(273 + 35) - (273 + (-5))} = \frac{268}{40} = 7.7$   
b- W= $\frac{X}{Cop)_c} = \frac{15}{6.7} = 2.24$  kw.  
Or W= $\frac{2.24}{15} = 0.15$  kw/kw of refrigeration.  
Refrigeration effect (Q<sub>in</sub>) = T<sub>e</sub>(S<sub>1</sub>-S<sub>4</sub>) = T<sub>e</sub>(S<sub>2</sub>-S<sub>3</sub>)  
From tables:  
S<sub>2</sub>=1.705kJ/kg°K. (saturated vapour at 35°C).  
S<sub>3</sub>=1.146kJ/kg°K. (saturated liquid at 35°C).  
Q  
Q<sub>ref.</sub> = (273+(-5))[1.705-1.146] = 149.812 kJ/kg.  
m= $\frac{X}{Q_{ref}} = \frac{15 kJ/sec}{149.812 kJ/kg} = 0.100125 kg/sec.$ 

## 3- Conditions for maximum coefficient of performance:

Remember that  $W = \frac{X}{Cop}$ .

 $\therefore$  The higher the Cop, the lower the work required. Clearly, for any two evaporating & condensing temperatures, the Carnot refrigerator is the most efficient for absents of irreversibility.

Now Cop= $\frac{T_e}{T_c - T_e}$ .



2<sup>nd</sup> year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

To maximize Cop either maximize  $T_e$  holding  $T_c$  constant or minimize  $T_c$  holding  $T_e$  constant. i.e. the difference  $(T_c-T_e)$  should be made as small as possible.

However, practical limitations impose limits on either  $T_e$  or  $T_c$  or both. Also, heat transfer between evaporator & the cooling medium takes place with a temperature difference  $\rightarrow$  irreversible process.

So, Carnot refrigerator is most efficient between any two temperatures  $\&(T_c-T_e)$  should be kept to minimum. Also, ( $\Delta t$ ) must be minimized by increasing the heat transfer area(A) or the overall heat transfer coefficient (U): [Q=UA $\Delta t$ ].

 $\therefore$  Practical limitations on (U & A) together with the selection of (T<sub>c</sub>& T<sub>e</sub>) dictate the limits on the Cop.





2<sup>nd</sup> year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024

## 4- standard vapour compression cycle (Ideal): -

Two main draws back with the Carnot refrigerator.

- i- Wet compression.
- ii- Isentropic expansion (work helps drive the compressor).
  - Wet compression damages the compressor & final stage of refrigerant is an average of mixture of super-heated vapour & liquid.
  - Expansion machine is impractical & the work obtained is minimal--- use a throttling device to reduce the pressure--- So process is irreversible, i.e. entropy increases.

 $1^{\circ}$  -  $2^{\circ}$  -  $3^{\circ}$  -  $4^{\circ}$  Carnot refrigerator.

1- 2- 3- 4 Ideal vapour compression refrigerator.





2nd year / Air conditioning 1 Al-Mustaqbal University Assist. Prof. Dr. Esam M. Mohamed Air conditioning and refrigeration **Technical Department** 2023-2024 T Pc=const. Saturated Super-heated zone. liquid  $Q_H$ 2 3\,3 Win Pe =const. 1 4 4  $Q_L$ Saturated vapor S

Every vapour compression system is composed of four essential parts.

- 1. Compressor (isentropic compression).
- 2. Condenser (constant pressure heat rejection).
- 3. Expansion valve (constant enthalpy expansion).
- 4. Evaporator (constant pressure heat addition).



2<sup>nd</sup> year / Air conditioning 1 Assist. Prof. Dr. Esam M. Mohamed 2023-2024



