

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

Propositional Logic

We now present a simple but powerful logic called propositional logic. We cover the

syntax of propositional logic and its semantics. The way in which the truth of sentence is

determined. Then we look at entailment. The relation between a sentence and another

sentence that follows from it and see how this leads to a simple algorithm for logical

inference.

Syntax

The syntax of propositional logic defines the allowable sentences. The atomic

sentences consist of a single proposition symbol. Each such symbol stands for a

proposition that can be true or false. We use symbols that start with an uppercase letter

and may contain other letters or subscripts, for example: P, Q, R, W1,3 and North. The

names are arbitrary but are often chosen to have some mnemonic value. There are two

proposition symbols with fixed meanings: True is always-true proposition and False is

always-false proposition. Complex sentences are constructed from simpler sentences,

using parentheses and logical connectives. There are five connectives in common use:

• ¬ (not). A sentence such as ¬W1,3 is called the negation of W1,3. A literal is either

an atomic sentence (a positive literal) or a negated atomic sentence (a negative

literal).

• ˄(and). A sentence whose main connective is ˄, such as W1,3 ˄ P3,1, is called a

conjunction. its parts are the conjuncts. (The ˄ looks like an “A” for “And”)

• ˅ (or). A sentence using ˅, such as (W1,3 ˄ P3,1) ˅ W2,2, is a disjunction the

disjuncts (W1,3 ˄ P3,1) and W2,2.

• ⇒ (implies). A sentence such as (W1,3 ˄ P3,1) ⇒ ¬ W2,2 is called an implication (or

conditional). Its premise or antecedent is (W1,3 ˄ P3,1), and its conclusion or

consequent is ¬W2,2. Implications are also known as rules or if-then statements.

• ⟺ (if and only if). The sentence W1,3 ⟺ ¬ W2,2 is a biconditional. Some other

books write this as ≡.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

Operator precedence

Precedence Operators

First Precedence Parenthesis

Second Precedence Negation

Third Precedence Conjunction (AND)

Fourth Precedence Disjunction (OR)

Fifth Precedence Implication

Six Precedence Biconditional

Semantics

Having specified the syntax of propositional logic, we now specify its semantics. The

semantics defines the rules for determining the truth of sentence with respect to a

particular model. In propositional logic, a model simply fixes the truth value (true or

false). For every proposition symbol. For example, if the sentences in the knowledge

base make use of the proposition symbols P1,2 , P2,2 and P3,1, then one possible model

is:

m1 = {P1,2 = false, P2,2 = false, P3,1 = true}.

With three proposition symbols, there are 23 = 8 possible models, the semantics for

propositional logic must specify how to compute the truth value of any sentence, given

a model. This is done recursively. All sentences are constructed from atomic

sentences and five connectives; therefore, we need to specify how to compute the

truth of atomic sentences and how to compute the truth of sentences formed with each

of the five connectives. Atomic sentences are easy:

• True is true in every model and false is false in every model.

• ¬𝑃 is true iff P is false in m.

• 𝑃 ∧ 𝑄 is true iff both P and Q are true in m.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

• 𝑃 ∨ 𝑄 is true iff either P or Q is true in m.

• 𝑃 ⇒ 𝑄 is true unless P is true and Q is false in m.

• 𝑃 ⟺ 𝑄 is true iff P and Q are both true or both false in m.

The rules can also be expressed with truth tables that specify the truth value of a

complex sentence for each possible assignment of truth values to its components. The

truth tables for the five connectives are given in figure below.

Logical Equivalence

Two sentences α and β are logically equivalent if they are true in the same set of models.

We write this 𝛼 ≡ 𝛽. For example, we can easily show (using truth tables) that

𝑃 ⋀ 𝑄 𝑎𝑛𝑑 𝑄⋀𝑃 are logically equivalent. Other equivalences are shown in figure below.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

 Validity

The second concept we will need is validity. A sentence is valid if it is true in all

models. For example, the sentence 𝑃 ∨ ¬𝑃 is valid. Valid sentence is also known as

tautologies. They are necessarily true because the sentence is true in all models. On

the other hand, a contradiction is a statement that is always false. For example, 𝑃 ∧

 ¬𝑃.

Satisfiability

The final concept we will need satisfiability. A sentence is satisfiable if it is true in, or

satisfied by, some model. Satisfiability can be checked by enumerating the possible

models until one is found that satisfies the sentence.

Inference and proofs

Proofs using truth table: one the method for determining the formal validity of an

argument, the truth table method is the simplest. Consider the following basic

example.

If it is raining, it is wet outside.

It is raining

It is wet outside.

Translating it into symbolic form using propositional variables and logical connectives, we

get the following:

 𝑃 ⇒ 𝑄

 𝑃

 𝑄

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

The argument is valid if the conclusion follows logically from the two premises. To use a

truth table to determine the validity of the argument, we first construct a truth table that

includes all of the premises and the conclusion. Testing for validity, we then verify that

there is no case in which the premises are true and the conclusion false.

First, list all possible truth values for the component propositions in the left-most columns.

Then in the next column, work out the possible truth values for the compound proposition.

For the final column, add the conclusion with its possible truth values. The truth table

looks as follows:

P Q P ⇒ Q Q

T T T T

T F F F

F T T T

F F T F

To determine validity, look at every row in which both premises (‘P ⟹ Q’, ‘P’) are true.

For those rows (the first row only, in this case), is there a case in which the conclusion

(‘Q’) is not true? There is not. Therefore, the argument is valid.

Inference rules

This section covers the inference rules that can be applied to derive a proof. A chain of

conclusions that leads to the desired goal.

1. Modus Ponens:

𝜶 ⇒ 𝜷 , 𝜶

𝜷

The notation means that, whenever any sentence of the form 𝛼 ⇒ 𝛽 and α are

given, then the sentence β can be inferred.

2. And-Elimination:

𝜶 ∧ 𝜷

𝜶

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

Another useful inference rule is And-Elimination, which says that, from a

conjunction, any of the conjuncts can be inferred.

By considering the possible truth values of α and β, on can show easily that Modus

Ponens and And-Elimination are sound once and for all. These rules can then be used in

any particular instances where then apply, generating sound inferences without the need

for enumerating models. Additionally, All the logical equivalences above, can be used as

inference rules.

Let us see how their inference rules can be used. Let start with 𝐵1,1 ⇔ (𝑃1,2⋁𝑃2,1) to infer

¬𝑃1,2.

1 𝐵1,1 ⟺ (𝑃1,2 ∨ 𝑃2,1) Apply biconditional elimination

2 (𝐵1,1 ⇒ (𝑃1,2 ∨ 𝑃2,1)) ∧ ((𝑃1,2 ∨ 𝑃2,1) ⇒ 𝐵1,1) Apply And-Elimination

3 ((𝑃1,2 ∨ 𝑃2,1) ⇒ 𝐵1,1)
Apply Logical equivalence for

contrapositives

4 ((¬𝐵1,1 ⇒ ¬(𝑃1,2 ∨ 𝑃2,1)) Apply Modus Ponens

5 ¬ (𝑃1,2 ∨ 𝑃2,2) Apply De Morgan’s rule

6 ¬𝑃1,2 ∧ ¬𝑃2,1 Apply commutativity of AND

7 ¬𝑃2,1 ∧ ¬𝑃1,2 Apply And-Elimination

8 ¬𝑃1,2

Proof by resolution: the inference rules covered so far are sound, but we have not

discussed the question of completeness for the inference algorithms that use them.

Algorithm using inference rules are complete in the sense that they will find any reachable

goal, but if the available inference rules are inadequate, then the goal is not reachable.

For example, if we removed the biconditional elimination rule, the proof in the preceding

section would not got through. This section introduces a single inference rule, resolution,

that yields a complete inference algorithm.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

The resolution rule applies only to clauses (that is, disjunction of literals), so it would

seem to be relevant only knowledge bases and queries consisting of clauses. How, then

can it lead to a complete inference procedure for all of propositional logic? The answer is

that every sentence of propositional logic is logically equivalent to a conjunction of

clauses. A sentence expressed as a conjunction of clauses is said to be in conjunctive

normal form or CNF. We now describe a procedure for converting to CNF. We illustrate

the procedure by converting the sentence 𝐵1,1 ⟺ (𝑃1,2 ∨ 𝑃2,1) into CNF. The steps are as

follows:

1. Eliminate ⇔, replacing 𝛼 ⟺ 𝛽 with (𝛼 ⇒ 𝛽) ∧ (𝛽 ⇒ 𝛼).

(𝐵1,1 ⟹ (𝑃1,2 ∨ 𝑃2,1)) ∧ ((𝑃1,2 ∨ 𝑃2,1) ⇒ 𝐵1,1)

2. Eliminate ⇒, replacing 𝛼 ⇒ 𝛽 with ¬𝛼 ∨ 𝛽:

(¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1) ∧ (¬(𝑃1,2 ∨ 𝑃2,1) ∨ 𝐵1,1)

3. CNF requires ¬ to appear only in literals, so we “move ¬ inwards” by repeated

application of the following equivalences.

In the example, we require just one application of the last rule:

(¬𝐵11 ∨ 𝑃1,2 ∨ 𝑃2,1) ∧ ((¬𝑃1,2 ∧ ¬𝑃2,1) ∨ 𝐵1,1)

4. Now we have a sentence containing nested ∧ and ∨ operators applied to literals.

We apply the distributivity law, distributing ∨ over ∧ wherever possible.

(¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1) ∧ (¬𝑃1,2 ∨ 𝐵1,1) ∧ (¬𝑃2,1 ∨ 𝐵1,1)

The original sentence is now in CNF, as a conjunction of three clauses.

Resolution Algorithm

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

Intelligent Agent

Inference procedures based on resolution work by using the principle of proof by

contradiction. That is, to show that 𝐾𝐵 ⊨ 𝛼, we show that (𝐾𝐵 ∧ ¬𝛼) is unsatisfiable.

A resolution algorithm first is convert (𝐾𝐵 ∧ ¬𝛼) into CNF. Then, the resolution rule is

applied to the resulting clauses. Each pair that contains complementary literals is resolved

to produce a new clause, which is added to the set if it is not already present. The process

continues until one of two things happens.

• There are no new clauses that can be added.

• Two clauses resolve to yield the empty clause.

