CHAPTER Four
 Sequences and Series

Sequences and infinite series

Sequences:

Def. An infinite sequence (or sequence) of numbers is a function whose domain is the set of integers greater than or equal to some integer $n_{0}, n_{0}=1$
The number $a(n)$ is the nth term of the sequence. Or the term with index n.
$\operatorname{Ex}(1)$ The sequence $\left\langle a_{n}\right\rangle$ whose nth terms is defined by:

1. $a_{n}=n-1$
$a_{1}=0, a_{2}=1, a_{3}=2$,
The sequence $\left\langle a_{n}\right\rangle=\langle 1,2,3, \ldots, n-1, \ldots$.
2. $a_{n}=\frac{1}{n}, a_{1}=1, a_{2}=\frac{1}{2}, a_{3}=\frac{1}{3}, \ldots$

The sequence $\left\langle a_{n}\right\rangle=\left\langle 1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\rangle$
3. $a_{n}=(-1)^{n+1}\left(\frac{1}{n}\right)$

$$
a_{1}=1, a_{2}=-\frac{1}{2}, a_{3}=\frac{1}{3}, \ldots \ldots
$$

The sequence $\left\langle a_{n}\right\rangle=\left\langle 1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots(-1)^{n+1}\left(\frac{1}{n}\right), \ldots\right\rangle$
4. $a_{n}=(-1)^{n+1}\left(1-\frac{1}{n}\right)$
$a_{1}=0, a_{2}=\frac{1}{2}, a_{3}=\frac{2}{3}, a_{4}=\frac{-3}{4}, \cdots$
the sequence $\left\langle a_{n}\right\rangle=\left\langle 0,-\frac{1}{2}, \frac{2}{3}, \ldots,(-1)^{n+1}\left(1-\frac{1}{n}\right), \ldots\right\rangle$
5. $a_{n}=\frac{n-1}{n}$

$$
a_{1}=0, a_{2}=\frac{1}{2}, a_{3}=\frac{2}{3}, \ldots \ldots . .
$$

the sequence $\left\langle a_{n}\right\rangle=\left\langle 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n-1}{n}, \ldots.\right\rangle$
We refer to the sequence whose nth term is a with the notation $\left\{a_{n}\right\}$ (the sequence a sub n)

Excercise

Find the first five terms of the following sequences:
$1-\left\langle\frac{2 n-1}{5 n+2}\right\rangle$
2- $\left\langle\frac{2^{n}}{n^{2}}\right\rangle$
3- $\left\langle\frac{2^{n}}{5^{n}}\right\rangle$
4- $\left\langle\frac{1-(-1)^{n}}{n^{3}}\right\rangle$
5- $\left\langle\frac{(-1)^{n+1}}{(2 n-1)!}\right\rangle$

Convergence and divergence

The sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges to the number L , if to every positive number $\varepsilon>0$, there corresponds an integer N such that for all n

$$
n>N \Rightarrow\left|a_{n}-L\right|<\varepsilon
$$

If no such limit exists, we say that $\left\{a_{n}\right\}$ diverges
If $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges to L , we write $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$ as $n \rightarrow \infty$, and we call L the limit of the sequence.
i.e A sequence that has a limit is said to be converges and it is converges to that limit.

Ex (2) : $a_{n}=n-1$

the sequence $\left\{a_{n}\right\}$ diverges

$$
a_{n}=\frac{1}{n}
$$

The sequence converges to 0 .
The sequences are graphed here in two different ways by plotting the number a_{n} on the horizontal axis, and by plotting the points $\left(n, a_{n}\right)$ in the coordinate plane.

Theorem: suppose that $\mathrm{f}(\mathrm{x})$ is a function defined for all $x \geq n_{0}$ and $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is a sequence such that $\mathrm{a}_{\mathrm{n}}=\mathrm{f}(\mathrm{n})$ when $n \geq n_{0}$ if $\lim _{x \rightarrow \infty} f(x)=L$ then $\lim _{x \rightarrow \infty} a_{n}=L$
$\operatorname{Ex}(3)$: Find the following limits :

1. $\lim _{n \rightarrow \infty}\left(-\frac{1}{n}\right)=-1 \lim _{n \rightarrow \infty} \frac{1}{n}=-1 \cdot 0=0$
2. $\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{n}=1 \cdot 0=0$
3. $\lim _{n \rightarrow \infty} \frac{5}{n^{2}}=5 \cdot \lim _{n \rightarrow \infty} \frac{1}{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=5 \cdot 0 \cdot 0=0$
4. $\lim _{n \rightarrow \infty} \frac{4-7 n^{3}}{n^{3}+1}=\lim _{n \rightarrow \infty} \frac{\frac{4}{n^{3}}-7}{1+\frac{1}{n^{3}}}=\frac{0-7}{1+0}=-7$
$\operatorname{Ex}(4)$: Find the following limits by using L'Hopital rule:
5. $\lim _{n \rightarrow \infty} \frac{2^{n}}{5 n}$
$\lim _{n \rightarrow \infty} \frac{2^{n}}{5 n}=\lim _{n \rightarrow \infty} \frac{2^{n} \cdot \ln 2}{5}=\infty$
6.

Infinite Series

Def. If $\left\{a_{n}\right\} \equiv a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ is a given sequence and if s_{n} is defined by $s_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k}$, then the sequence $\left\{s_{n}\right\} \equiv s_{1}, s_{2}, s_{3}, \ldots, s_{n}, \ldots$ is called an infinite series where

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{2}=a_{1}+a_{2} \\
& s_{3}=a_{1}+a_{2}+a_{3} \\
& \vdots \\
& s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
\end{aligned}
$$

Notes:

1. The sequence $\left\{s_{n}\right\}$ is denoted by $\sum_{n=1}^{\infty} a_{n}$
2. $s_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k}$ is called the $\mathrm{n}^{\text {th }}$ partial sum of the series $\sum_{n=1}^{\infty} a_{n}$
3. The number a_{n} is called the $\mathrm{n}^{\text {th }}$ term of the series $\sum_{n=1}^{\infty} a_{n}$
4. The series $\sum_{n=1}^{\infty} a_{n}$ is said to be converge to a number L if and only if $L=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\sum_{n=1}^{\infty} a_{n}$

If no such limit exist then the series $\sum_{n=1}^{\infty} a_{n}$ is diverges.

Def (Geometric Series)

The series $a+a r+a r^{2}+\ldots+a r^{n-1}+\cdots=\sum_{n=1}^{\infty} a r^{n-1}$ is called a geometric series where r is the ratio of any term to the one before it , and $a \neq 0$.

Theorem (1):

If $|r|<1(-1<r<1)$,the geometric series converges to the number $\frac{a}{1-r}$.
If $|r| \geq 1(r \leq-1$ or $r \geq 1)$,the geometric series is diverges .
If $r=0$, the series converges to 0 .
That is $\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\ldots+a r^{n-1}+\cdots=\frac{a}{1-r} \quad$ if $-1<\mathrm{r}<1$
Proof
case (1) if $\mathrm{r}=1, \mathrm{a} \neq 0$
$\boldsymbol{S}_{n}=a+a+a+\ldots . .+a=n a$
$\lim _{S_{n}}=\lim n a=a \lim n=\infty$
i.e if $r=1$, then $\left\langle S_{n}\right\rangle$ is diverges.

Case(2) if $\mathrm{r}=1$

$$
\begin{equation*}
\boldsymbol{S}_{n}=a+a r+a r^{2}+a r^{3}+\ldots .+a r^{n-1} \tag{1}
\end{equation*}
$$

$r_{S_{n}}=a r+a r^{2}+a r^{3}+\ldots \ldots \ldots .+a r^{n-1}$
$\boldsymbol{S}_{n}-{ }^{-r} \boldsymbol{S}_{n}=a-a r^{n}$
(1-r) $S_{n}=a-a r^{n}$
$S_{n}=\mathrm{a}\left(1-r^{n}\right) / 1-\mathrm{r}$
If $|r| \leq 1$, then $\left\langle r^{n}\right\rangle$ converges to 0 .

$$
\text { Since } \begin{aligned}
\sum_{n=1}^{\infty} a r^{n-1} & =\lim S_{n}=\lim a / 1-r\left(1-r^{n}\right) \\
& =\mathrm{a} / 1-r\left[\lim 1-\lim r^{n}\right]=\mathrm{a} / 1-r[1-0]=\mathrm{a} / 1-r
\end{aligned}
$$

Thus $\sum_{n=1}^{\infty} a r^{n-1}$ converges to $\mathrm{a} / 1-\mathrm{r}$, when $|\mathrm{r}|<1$
Case(3) if $\mathrm{a} \neq 0$, and $\mathrm{Ir} \mid>$
$\therefore \lim a_{n}=\lim a / 1-r\left(1-r^{n}\right)=a / 1-r \lim \left(1-r^{n}\right)$ diverges.
Since $r^{n} \rightarrow \infty$ if a>0
$r^{n} \rightarrow-\infty$ if $a<0$

Case (4) if $\mathrm{a} \neq 0 \quad, \mathrm{r}=-1$
$\lim a_{n}=\lim a / 1-r\left(1-(-1)^{n}=a / 1-r \lim \left[1-(-1)^{n}\right] \quad\right.$ diverges.
Case (5) if $\mathrm{a}=0$
$\therefore \lim a_{n}=\lim \sum a^{n-1}=\lim 0=0$
$\therefore \lim a r^{n-1}$ is diverges to 0 .
We get if $-1<\mathrm{r}<1$ then the series $\sum a r^{n-1}$ is converges to $\mathrm{a} / 1-\mathrm{r}$ And if $\geq r$ ro $1 \leq r$). $1 \leq|r|-1$) the series $\sum a r^{n-1}$ is diverges.
$\operatorname{Ex}(8)$ Find the geometric series with $\mathrm{a}=1, \mathrm{r}=3$

$$
1+3+9+27+\cdots+\cdots=1(1+3+9+\cdots)=\frac{1}{1-3}=\frac{1}{-2}
$$

$\operatorname{Ex}(9)$ Find the geometric series with $\mathrm{a}=4, \mathrm{r}=-\frac{1}{2}$

$$
4-2+1-\frac{1}{2}+\frac{1}{4}-\cdots=4\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\cdots\right)=\frac{4}{1+\frac{1}{2}}=\frac{8}{3}
$$

$\operatorname{Ex}(10)$:- Determine which of the following series is converges and which is diverges?

1. $\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n-1}$
2. $\sum_{n=1}^{\infty} 4\left(\frac{-1}{2}\right)^{n-1}$
3. $\sum_{n=1}^{\infty} \frac{2}{n^{n-1}}$

Solu.

1. The series $\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n-1}$ is converge because it is a geometric series with $\mathrm{a}=1, \mathrm{r}=1 / 2$

$$
=1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{3}+\cdots+\left(\frac{1}{3}\right)^{n-1}+\cdots=\frac{a}{1-r}=\frac{1}{1-\frac{1}{3}}=\frac{3}{2}
$$

2. The series $\sum_{n=1}^{\infty} 4\left(\frac{-1}{2}\right)^{n-1}$ is converge because it is a geometric series with $\mathrm{a}=4$, $\mathrm{r}=-1 / 2$

$$
=4-4\left(\frac{1}{2}\right)+4\left(\frac{1}{2}\right)^{2}-4\left(\frac{1}{2}\right)^{3}+\cdots+4(-1)^{n-1}\left(\frac{1}{2}\right)^{n-1}+\cdots=\frac{4}{1-\left(-\frac{1}{2}\right)}=\frac{4}{1+\frac{1}{2}}=\frac{8}{3}
$$

3. The series $\sum_{n=1}^{\infty} \frac{2}{3^{n-1}}$ is convergence because it is a geometric series with $\mathrm{a}=2, r=\frac{1}{3}$

$$
2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\cdots+\left(\frac{2}{3^{n-1}}\right)=\frac{a}{1-r}=\frac{2}{1-\frac{1}{3}}=\frac{2}{\frac{2}{3}}=3
$$

$\operatorname{Ex}(11)$ Find $\sum_{n=1}^{\infty} 1 / 5^{n+1}$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} 1 / 5^{n+1}=1 / 5^{2}+1 / 5^{3}+1 / 5^{4}+\ldots \ldots . \\
& 1 / 5^{3} \times 5^{2}=1 / 5=r
\end{aligned}
$$

\therefore the series is geometric with $\mathrm{a}=1 / 5^{2}, \mathrm{r}=1 / 5$
$\because \quad-1<r<1$
\therefore The series is converges to $\mathrm{a} / 1-\mathrm{r}$
$\therefore \sum_{n=1}^{\infty} 1 / 5^{n+1}=1 / 5^{2} / 1-1 / 5=1 / 5^{2} \times 5 / 4=1 / 20$
$\operatorname{Ex}(12)$ Find $\sum_{n=1}^{\infty} 7 / 4^{n}$
$\sum_{n=1}^{\infty} 7 / 4^{n}=7 / 4+7 / 4^{2}+7 / 4^{3}+\ldots \ldots$.
$7 / 4^{2} \times 4 / 7=1 / 4=r$
\therefore the series is geometric with $\mathrm{a}=7 / 4, \mathrm{r}=1 / 4$
$\because-1<r<1$
The series converges to $\mathrm{a} / 1-\mathrm{r}$
$\therefore \sum_{n=1}^{\infty} 7 / 4^{n}=a / 1-r=7 / 4 /(1-1 / 4)=7 / 4 /(3 / 4)=7 / 3$
\therefore The series is converges to $7 / 3$
Ex(13) Find $\sum_{n=1}^{\infty}(-1)^{n} 5 / 4^{n}$
$\sum_{n=1}^{\infty}(-1)^{n} 5 / 4^{n}=5-5 / 4+5 / 4^{2}-5 / 4^{3}+\ldots \ldots \ldots \ldots$
$-5 / 4 \times 1 / 5=-1 / 4=r$
\therefore the series is geometric with $\mathrm{a}=5, \mathrm{r}=-1 / 4$
$\because-1<r<1$
\therefore the series is converges to $\mathrm{a} / 1-\mathrm{r}$
$\therefore \sum_{n=1}^{\infty}(-1)^{n} 5 / 4^{n}=\mathrm{a} / 1-\mathrm{r}=5 / 1+4=5 / 5 / 4=20 / 5=4$
The series converges to 4
Ex(14) Find $\sum_{n=1}^{\infty} 2^{n} / 5^{n}$
$\sum_{n=1}^{\infty} 2^{n} / 5^{n}=2 / 5+2^{2} / 5^{2}+2^{3} / 5^{3}+\ldots$.
$2^{2} / 5^{2} \times 5 / 2=2 / 5=r$
\therefore the series is geometric with $a=2 / 5, r=2 / 5$
$\because-1<r<1$
Then the series is converges to $\mathrm{a} / 1-\mathrm{r}$
$\sum_{n=1}^{\infty} 2^{n} / 5^{n}=a / 1-r=2 / 5 / 1-(2 / 5)=(2 / 5) /(3 / 5)=2 / 3$

The series converges to $2 / 3$

Taylor ${ }^{\text {'s }}$ And Maclaurian ${ }^{\text {s }}$ Series Expansion

Suppose that $\mathrm{f}(\mathrm{x})$ and its derivatives $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x), \ldots, f^{(n)}(x), \ldots$ are all exist and continuous at $x=a$ in some interval containing the point a, then $f(x)$ can be written as

$$
\begin{align*}
& f(x)=f(a)+\frac{1}{1!} f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a) \\
& (x-a)^{n}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^{n}---------------(1) \tag{1}
\end{align*}
$$

equation (1) is called Taylor ${ }^{\text {'s }}$ series expansion of $f(x)$ at $x=a$
In the case when $\mathrm{a}=0$, the equation(1) becomes

$$
\begin{equation*}
f(x)=f(0)+\frac{1}{1!} f^{\prime}(0) x+\frac{1}{2!} f^{\prime \prime}(0) x^{2}+\frac{1}{3!} f^{\prime \prime \prime}(0) x^{3}+\cdots+\frac{1}{n!} f^{(n)}(0) x^{n}+\cdots---(\tag{2}
\end{equation*}
$$

equation (2) is called Maclaurian ${ }^{\text {'s }}$ series of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0$.
$\mathbf{E x}(1)$:- Expand $f(x)=x^{4}+3 x^{3}+x^{2}+2 x-3$ about $\mathrm{x}=1$
Solu. $\mathrm{a}=1$

$$
\begin{array}{ll}
f(x)=f(1)+\frac{1}{1!} f^{\prime}(1)(x-1)+\frac{1}{2!} f^{\prime \prime}(1)(x-1)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(1)(x-1)^{3}+\cdots+\frac{1}{n!} f^{(n)}(1) \\
(x-1)^{n}+\cdots & \\
\begin{array}{ll}
f(x)=x^{4}+3 x^{3}+x^{2}+2 x-3 & \\
f^{\prime}(x)=4 x^{3}+9 x^{2}+2 x+2 & f^{\prime}(1)=4 \\
f^{\prime \prime}(x)=12 x^{2}+18 x+2 & f^{\prime \prime}(1)=32 \\
f^{(3)}(x)=24 x+18 & f^{(3)}(1)=42 \\
f^{(4)}(x)=24 & f^{(4)}(1)=24 \\
f^{(5)}(x)=f^{(6)}(x)=\cdots=0 & \\
f(x)=4+\frac{17}{1!}(x-1)+\frac{32}{2!}(x-1)^{2}+\frac{42}{3!}(x-1)^{3}+\frac{24}{4!}(x-1)^{4} \\
& =4+17(x-1)+16(x-1)^{2}+7(x-1)^{3}+(x-1)^{4}
\end{array}
\end{array}
$$

$\mathbf{E x}(\mathbf{2}):-$ Find Taylor series expansion of $f(x)=x^{2}+3 x-2$ about $\mathrm{x}=1, \mathrm{x}=-1, \mathrm{x}=2$.

Solu.

$$
\left.\begin{array}{llll}
f(x)=x^{2}+3 x-2 & f(1)=2 & f(-1)=-4 & f(2)=8 \\
f^{\prime}(x)=2 x+3 \\
f^{\prime \prime}(x)=2 & \Rightarrow \begin{array}{l}
f^{\prime}(1)=5 \\
f^{\prime \prime}(1)=2
\end{array} & f^{\prime}(-1)=1 & f^{\prime \prime}(-1)=2
\end{array}\right)
$$

$f(x)=8+7(x-2)+(x-2)^{2}$
$\mathbf{E x}(3)$:- Find Taylor series expansion of $f(x)=\frac{1}{x}$ about $\mathrm{x}=1$
Solu.

$$
\begin{array}{ll}
f(x)=x^{-1} & f(1)=1 \\
f^{\prime}(x)=-x^{-2} & f^{\prime}(1)=-1 \\
f^{\prime \prime}(x)=2 x^{-3} & f^{\prime \prime}(1)=2 \\
f^{\prime \prime \prime}(x)=-6 x^{-4} & f^{\prime \prime \prime}(1)=-6 \\
f^{(4)}(x)=24 x^{-5} & f^{(4)}(1)=24 \\
\vdots & \vdots \\
f(x)=1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4}+\cdots=\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}
\end{array}
$$

$\mathbf{E x (4) : - ~ F i n d ~ M a c l a u r i a n ~ s e r i e s ~ e x p a n s i o n ~ o f ~ t h e ~ f u n c t i o n s ~} \sin x$

Solu.

$$
\begin{array}{cl}
f(x)=\sin x & f(0)=0 \\
f^{\prime}(x)=\cos x & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=-\cos x & f^{\prime \prime \prime}(0)=-1 \\
f^{(4)}(x)=\sin x & f^{(4)}(0)=0 \\
\vdots & \vdots \\
f(x)=\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{array}
$$

$\mathbf{E x}(5)$:- Find Maclaurian series expansion for the following functions

$$
\begin{array}{lc}
\frac{1}{1-x}, \frac{1}{(1-x)^{2}} & \\
f(x)=\frac{1}{1-x}=(1-x)^{-1} & \Rightarrow f(0)=1 \\
f^{\prime}(x)=(1-x)^{-2}=1!(1-x)^{-2} & f^{\prime}(0)=1! \\
f^{\prime \prime}(x)=2(1-x)^{-3}=2!(1-x)^{-3} & f^{\prime \prime}(0)=2! \\
f^{\prime \prime \prime}(x)=6(1-x)^{-4}=3!(1-x)^{-4} & f^{\prime \prime \prime}(0)=3! \\
f^{(4)}(x)=24(1-x)^{-5}=4!(1-x)^{-5} & \Rightarrow f^{(4)}(0)=4! \\
\vdots & \vdots \\
f^{(n)}(x)=n!(1-x)^{-(n+1)} & f^{(n)}(0)=n! \\
\vdots & \vdots \\
f(x)=(1-x)^{-1}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots=\sum_{n=0}^{\infty} x^{n}
\end{array}
$$

$$
\begin{aligned}
& f^{\prime}(x)=(1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots=\sum_{n=1}^{\infty} n x^{n-1} \\
& f^{\prime \prime}(x)=2(1-x)^{-3}=2+6 x+12 x^{2}+20 x^{3}+\cdots \\
& \therefore(1-x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+\cdots \\
& \frac{1}{1+x}=(1+x)^{-1}=[1-(-x)]^{-1}=1+(-x)+(-x)^{2}+(-x)^{3}+(-x)^{4}+\cdots \\
& \quad=1-x+x^{2}-x^{3}+x^{4}-\cdots
\end{aligned}
$$

$\mathbf{E x (6)}$:- Find Maclaurian series expansion for tanx.
$\tan x=x+\frac{\mathrm{x}^{3}}{3}+\frac{2 x^{5}}{15}+\cdots$

Exercises:

1. Find the geometric series with
a. $a=4, r=\frac{1}{2}$
b. $\quad a=\frac{1}{9}, r=\frac{1}{3}$
2. Find the following series
a. $\sum_{n=1}^{\infty} \frac{1}{5^{n+1}}$
b. $\sum_{n=1}^{\infty} \frac{7}{4^{n}}$
c. $\sum_{n=1}^{\infty} \frac{3}{2^{n-1}}$
3. Determine whether the following series is converges or diverges.
a. $\sum_{n=1}^{\infty} \frac{1}{n!}$
b. $\sum_{n=1}^{\infty} \frac{1}{2^{n}+1}$
4. Find the Taylor series for the following functions at $\mathrm{a}=2$

$$
\begin{aligned}
& f(x)=\cos x \\
& f(x)=\frac{1}{x}
\end{aligned}
$$

6. Find Maclaurian series for the following functions

$$
f(x)=\frac{1}{1-x} \quad f(x)=\frac{1}{(1-x)^{3}}
$$

