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CHAPTER Four 

Sequences and Series 

  Sequences and infinite series 

Sequences:  

Def. An infinite sequence (or sequence) of numbers is a function whose domain is 

the set of integers greater than or equal to some integer n0, n0=1 

The number a(n) is the nth term of the sequence. Or the term with index n. 

Ex(1) The sequence an
 whose nth terms is defined by: 
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We refer to the sequence whose nth term is a with the notation {an} (the sequence 

a sub n) 

 

Excercise 

Find the first five terms of the following sequences: 
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Convergence and divergence  

The sequence {an} converges to the number L, if to every positive number 0 , 

there corresponds an integer N such that for all n   

   LaNn n  

If no such limit exists, we say that {an} diverges  

If {an} converges to L, we write Lan
n




lim  or Lan  as n , and we call L the 

limit of the sequence. 

i.e A sequence that has a limit is said to be converges and it is converges to that 

limit. 

 

Ex (2) : 1 nan                     1a    2a     3a                                   

                                                                                                      .  diverges 

                                   0       1       2                                                     . 
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the sequence {an} diverges 
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The sequence converges to 0. 

 

The sequences are graphed here in two different ways by plotting the number an on 

the horizontal axis, and by plotting the points (n, an) in the coordinate plane. 

 

Theorem: suppose that f(x) is a function defined for all 0nx   and {an} is a 

sequence such that an=f(n) when 0nn   if    Lxf
x




lim  then Lan
x




lim  

Ex(3) : Find the following limits : 
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   Ex(4):  Find the following limits by using LʼHopital rule: 
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Infinite Series 

Def.  If    ,,,,,
321 nn

aaaaa   is a given sequence and if sn is defined by 
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If no such limit exist then the series 


1n
n

a  is diverges. 

 

  Def  (Geometric Series)  

The series 1

1

12 






 n
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n raararara   is called a geometric series 

where r is the ratio of any term to the one before it, and 0a . 

 

Theorem (1): 

If  111  rr   ,the geometric series converges to the number 
r
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1
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If  111  rorrr   ,the geometric series is diverges . 

If r=0 , the series converges to 0. 
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Proof  

case (1)    if r= 1  , a≠ 0 
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i.e if r =1, then sn
is diverges. 

Case(2)  if r≠1  
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Case (4)  if a≠0     , r = -1 

](1lim[1/(1(1/limlim )1)1  
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n
raraa    diverges. 

Case (5)  if a=0 
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   is diverges  to 0 . 

We get if   -1< r< 1 then the series  


r
n

a
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And if  ≤r ro 1≤r),  1≤ ׀r1-׀)   the series 


r
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a
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  is diverges. 

Ex(8)  Find the geometric series with a=1, r=3 

            
2

1

31

1
931127931
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Ex(10):- Determine which of the following series is converges and which is 

diverges ? 
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Solu.  

1. The series 
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Ex(11) Find
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 the series is geometric with a= 1/5
2
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Ex(12)  Find 
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The series is converges to 7/3 
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 -1< r < 1 

the series is converges to  a/1-r 
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The series converges to 4 
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 the series is geometric with a= 2/5 , r = 2/5 
 -1 <r < 1 

Then the series is converges to  a/1-r 
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The series converges to 2/3 
 
  Taylor

’s
 And Maclaurian

’s
 Series Expansion 

Suppose that f(x) and its derivatives  ),(,),(),(),( )( xfxfxfxf n are all exist 

and continuous at x=a in some interval containing the point a, then f(x) can be 

written as 
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equation (1) is called Taylor
’s
 series expansion of f(x) at x=a 

 In the case when a=0, the equation(1) becomes  
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equation (2) is called Maclaurian
’s
 series of f(x) at x=0. 

Ex(1):- Expand 323)( 234  xxxxxf  about x=1 

Solu. a=1  
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Ex(2):- Find Taylor series expansion of 23)( 2  xxxf  about x=1, x=-1, x=2.    
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2)2()2(78)(  xxxf  

Ex(3):- Find Taylor series expansion of 
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Ex(4):- Find Maclaurian series expansion of the functions xsin  

Solu.  
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Ex(5):- Find Maclaurian series expansion for the following functions 
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Ex(6):- Find Maclaurian series expansion for  tanx . 
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Exercises:  
1.   Find the geometric series with 
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2. Find the following series  
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3.   Determine whether the following series is converges or diverges. 
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5.    Find the Taylor series for the following functions at a=2 
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6.    Find Maclaurian series for the following functions 
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