
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4: Threads

Operating Systems

Lecturer: Dalya Samer

4.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter4 Outlines

▪ Introduction

▪ Multicore Programming

▪ Multithreading Models

▪ Benefits of threads

▪ Thread Libraries

4.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Introduction (1/6)

▪ A thread is a basic unit of CPU utilization; it comprises

a thread ID, a program counter, a register set, and a stack.

▪ It shares with other threads belonging to the same

process its code section, data section, and other

operating-system resources, such as open files and

signals.

4.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Introduction (2/6)

▪ Let's say, for example, a program is not capable of

drawing pictures while reading keystrokes. The program

must give its full attention to the keyboard input lacking

the ability to handle more than one event at a time.

▪ The ideal solution to this problem is the seamless

execution of two or more sections of a program at the

same time. Threads allows us to do this.

4.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Introduction (3/6)

4.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Introduction (4/6)

▪ Most software applications that run on modern computers are

multithreaded.

• An application typically is implemented as a separate process with

several threads of control.

➢ A web browser might have one thread display images or text

while another thread retrieves data from the network, for

example.

➢ A word processor may have a thread for displaying graphics,

another thread for responding to keystrokes from the user, and

a third thread for performing spelling and grammar checking in

the background.

4.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Introduction (5/6)

•Multithreaded Server Architecture

4.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Introduction (6/6)

▪ Finally, most operating-system kernels are now

multithreaded. Several threads operate in the kernel, and

each thread performs a specific task, such as managing

devices, managing memory, or interrupt handling.

4.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

▪ Multithreaded programming provides a mechanism for more

efficient use of these multicore or multiprocessor systems.

Concurrent execution on single-core system

Parallelism on a multi-core system

4.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models (1/6)

▪ Support for threads may be provided either at the user

level, for user threads, or by the kernel, for kernel

threads.

▪ User threads are supported above the kernel and are

managed without kernel support, whereas kernel threads

are supported and managed directly by the operating

system.

4.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User and Kernel Threads

4.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models (2/6)

▪ Ultimately, a relationship must exist between user threads

and kernel threads.

▪ We look at three common models:

➢ the one-to-one model

➢ the many-to-one model

➢ the many-to-many model.

4.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models (3/6)

•One-to-One model (1/3)

4.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models (3/6)

•One-to-One model (2/3)

➢Each user-level thread maps to kernel thread

➢Creating a user-level thread creates a kernel thread

➢More concurrency than many-to-one

➢Examples

▪Windows

▪Linux

4.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models (3/6)

•One-to-One model (3/3)

➢The only drawback to this model is that creating a user

thread requires creating the corresponding kernel thread.

Because the overhead of creating kernel threads can burden

the performance of an application, most implementations of

this model restrict the number of threads supported by the

system. Linux, along with the family of Windows operating

systems, implement the one-to-one model.

4.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models (4/6)

•Many-to-One model

4.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models (5/6)

•Many-to-Many Model (1/2)

4.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models (5/6)

•Many-to-Many Model (2/2)

➢Allows many user level threads to be mapped to many

kernel threads.

➢Allows the operating system to create a sufficient

number of kernel threads.

➢Allows the developer to create as many user threads

as she wishes, it does not result in true concurrency,

because the kernel can schedule only one thread at a

time.

4.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models (6/6)

▪ Similar to Many to Many, except that it allows a user thread to

be bound to kernel thread

•Two-level Model

4.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Benefits of threads

▪ Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces.

▪ Resource Sharing – threads share resources of process,

easier than shared memory or message passing.

▪ Economy – cheaper than process creation, thread

switching lower overhead than context switching.

▪ Scalability – process can take advantage of multicore

architectures.

4.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Libraries

▪ Thread library provides programmer with API for

creating and managing threads.

▪ User Threads - management done by user-level threads

library

▪ Three primary thread libraries are in use today:

• POSIX Pthreads

• Windows threads

• Java threads

4.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example

4.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example (Cont.)

4.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Multithreaded C Program

4.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Threads

▪ Java threads are managed by the JVM

▪ Typically implemented using the threads model provided by underlying

OS

▪ Java threads may be created by:

• Extending Thread class

• Implementing the Runnable interface

• Standard practice is to implement Runnable interface

4.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Threads

Implementing Runnable interface:

Creating a thread:

Waiting on a thread:

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 4

