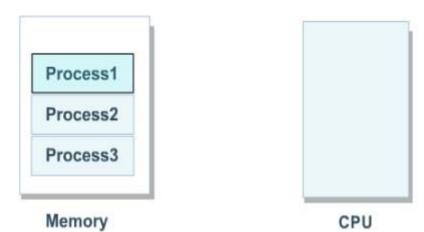

Operating Systems Chapter 5: CPU Scheduling

Lecturer: Dalya Samer

Operating System Concepts – 10th Edition

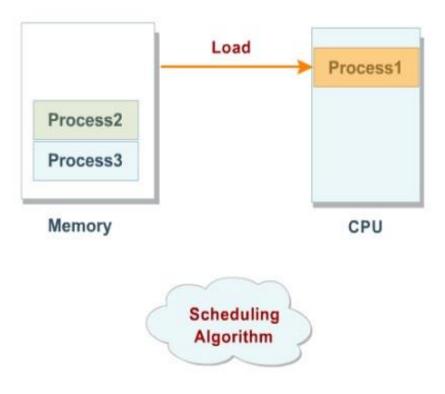
Silberschatz, Galvin and Gagne ©2018

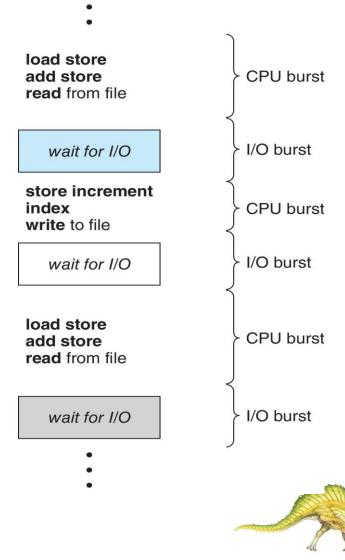
- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms


- **CPU scheduling** is the central in multi-programming system.
- Maximum CPU utilization obtained with multiprogramming (prevent CPU from being idle).
- Processes residing in the main memory is selected by the Scheduler that is:

≻Concerned with deciding a policy about which process is to be selected.

 \succ Process selection based on a scheduling algorithm.





Operating System Concepts – 10th Edition


- Process execution consists of a cycle of CPU execution and I/O wait.
- Processes alternate between these two states. Process execution begins with a CPU burst. That is followed by an I/O burst, which is followed by another CPU burst, then another I/O burst, and so on.
- CPU bursts vary greatly from process to process and from computer to computer.

• <u>Schedulers</u>

- Long-term scheduler chooses some of them to go to memory (ready queue).
- Then, **short-term scheduler** (or **CPU scheduler**) chooses from ready queue a job to run on CPU.
- Medium-term scheduler may move (swap) some partially-executed jobs from memory to disk (to enhance performance).



Silberschatz, Galvin and Gagne ©2018

• CPU Scheduler

• Whenever the CPU becomes idle, the operating system must select one of the processes in the ready queue to be executed. The selection process is carried out by the **short-term scheduler**, or **CPU scheduler**.

- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates

- Scheduling can be:
- Non-preemptive

➤ Once a process is allocated the CPU, it **does not** leave until terminate.

• Preemptive

> OS can force (preempt) a process from CPU at anytime.

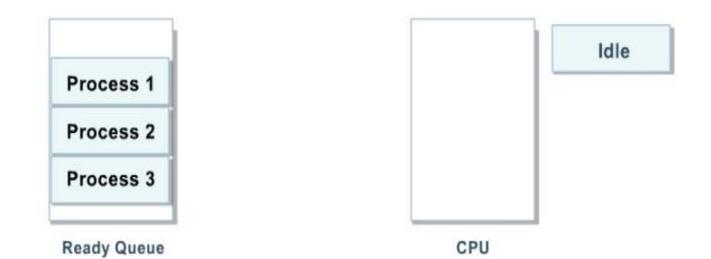
✓ Say, to allocate CPU to another higher-priority process.

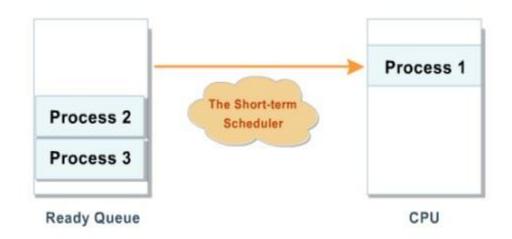
Non-preemptive and Preemptive

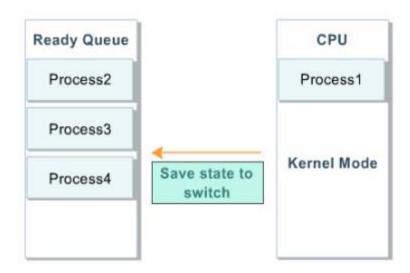
Which is harder to implement? and why?

Silberschatz, Galvin and Gagne ©2018

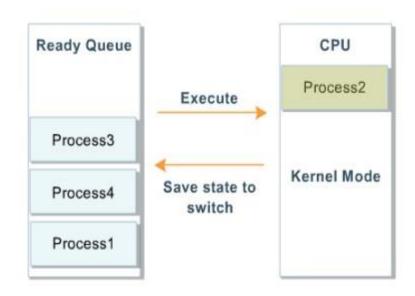
- Non-preemptive and Preemptive
- **Preemptive is harder:** Need to maintain consistency of data shared between processes, and more importantly, kernel data structures (e.g., I/O queues).


- Dispatcher module gives control of the CPU to the process selected by the CPU scheduler; this involves:
 - Switching context
 - Switching to user mode
 - Jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one process and start another running


Dispatcher


Dispatcher

Dispatcher



Operating System Concepts – 10th Edition

Dispatcher

Operating System Concepts – 10th Edition

- **CPU utilization** keep the CPU as busy as possible
- Throughput no. of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced.

Scheduling Criteria

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time



Scheduling Algorithms

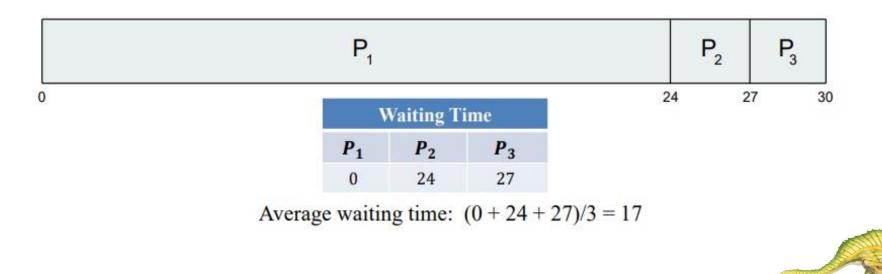
- There are many different CPU-scheduling algorithms:
- 1. First Come, First Served (FCFS).
- 2. Shortest Job First (SJF).

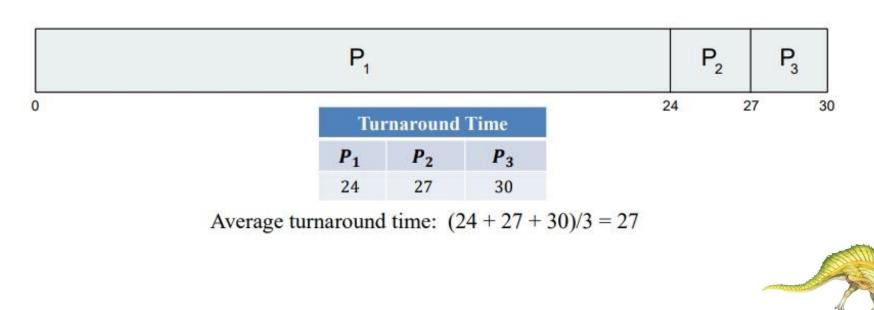
> Preemptive SJF.

- > Non-Preemptive SJF.
- 3. Priority.
- 4. Round Robin.
- 5. Multilevel queues.

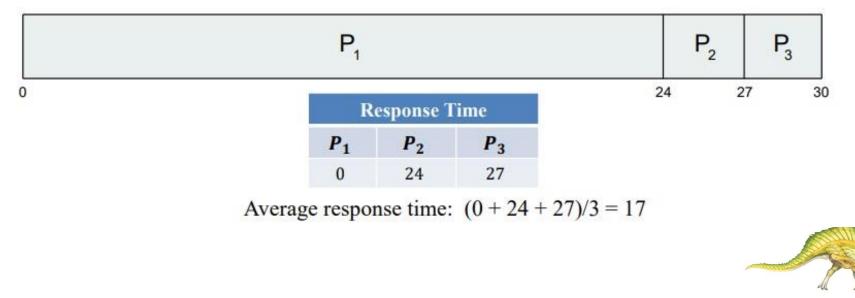
Scheduling Algorithms

1. First-Come, First-Served (FCFS) Scheduling


Process	Burst Time
P_{I}	24
P_2	3
P_3	3



Process	Burst Time
P_{I}	24
P_2	3
P_3	3

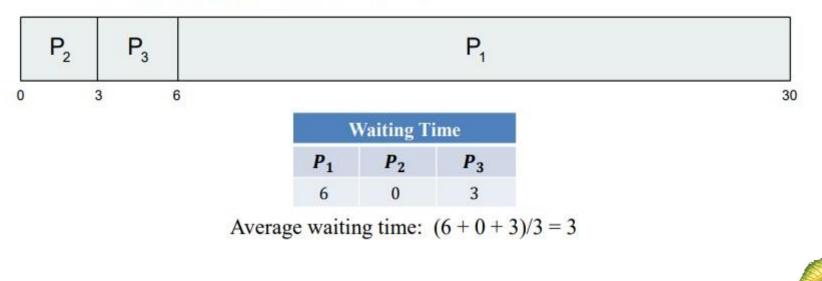

Process	Burst Time
P_1	24
P_2	3
P_3	3

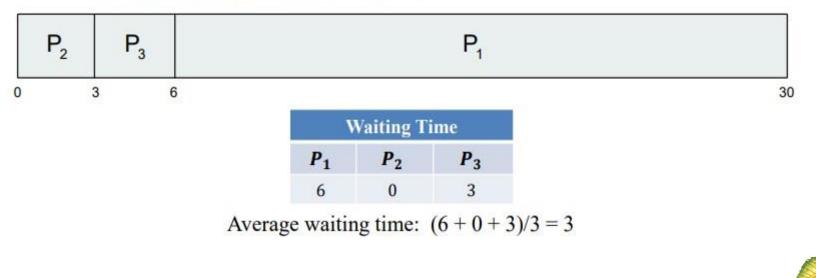
Process	Burst Time
P_1	24
P_2	3
P_3	3

Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

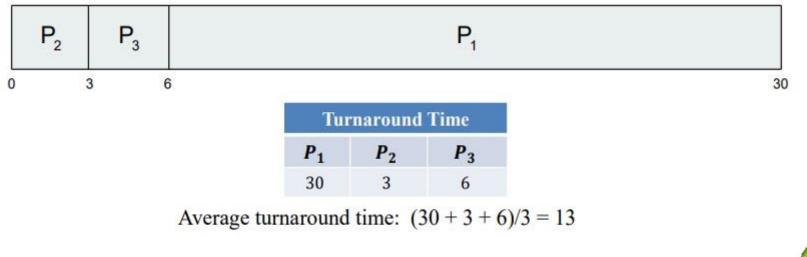
Operating System Concepts – 10th Edition

Process	Burst Time
P_1	24
P_2	3
P_3	3
07.00	

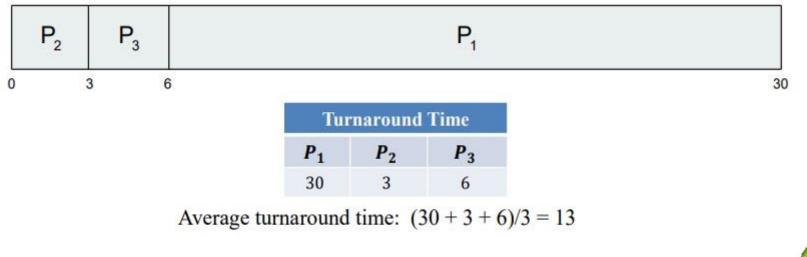

Process	Burst Time
P_1	24
P_2	3
P_3	3



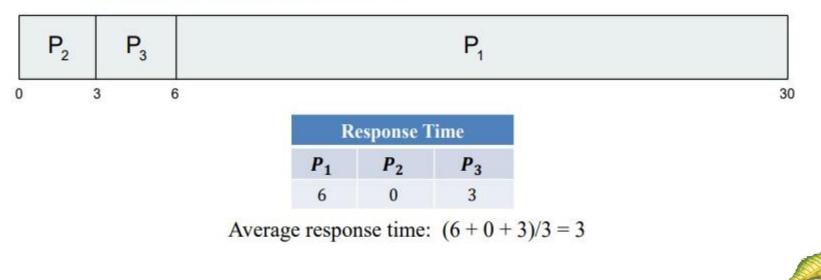
Process	Burst Time
P_{I}	24
P_2	3
P_3	3



Process	Burst Time
P_{I}	24
P_2	3
P_3	3



Process	Burst Time
P_1	24
P_2	3
P_3	3



Process	Burst Time
P_1	24
P_2	3
P_3	3

Process	Burst Time
P_{l}	24
P_2	3
P_3	3

- FCFS is fair in the formal sense or human sense of fairness.
- but it is unfair in the sense that long jobs take priority over short jobs and unimportant jobs make important jobs wait.
- One of the major drawbacks of this scheme is that the waiting time and the average turnaround time is often quite long.

2. Shortest-Job-First (SJF) Scheduling

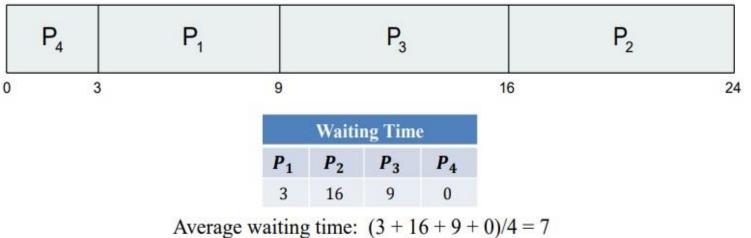
- Associate with each process the length of its next CPU burst.
 - Use these lengths to schedule the process with the shortest time.
- SJF is optimal gives minimum average waiting time for a given set of processes.
 - The difficulty is knowing the length of the next CPU request.
 - Could ask the user.

2.1 Shortest-Job-First (SJF) Scheduling

Process	Burst Time
P_{I}	6
P_2	8
P_3	7
P_4	3

□ SJF scheduling chart

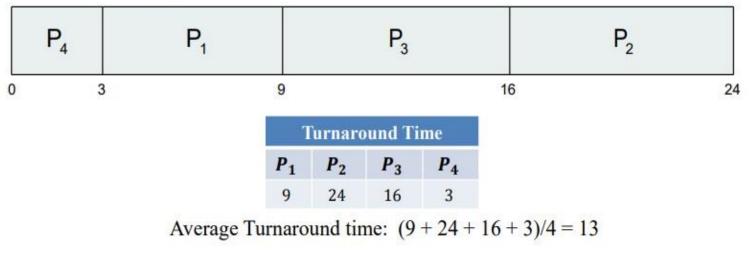
	P ₄	P ₁	P ₃	P ₂
0	3	9	16	24



2.1 Shortest-Job-First (SJF) Scheduling

Process	Burst Time	
P_{I}	6	
P_2	8	
P_3	7	
P_4	3	

□ SJF scheduling chart

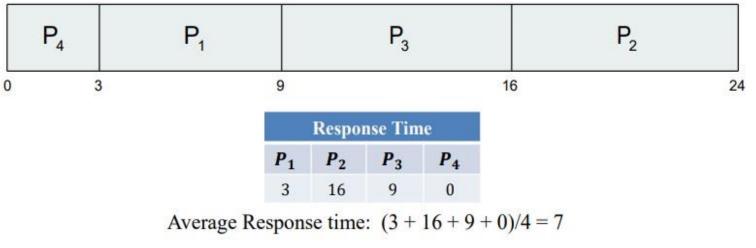

Silberschatz, Galvin and Gagne ©2018

2.1 Shortest-Job-First (SJF) Scheduling

Process	Burst Time	
P_{I}	6	
P_2	8	
$\tilde{P_3}$	7	
P_4	3	

SJF scheduling chart

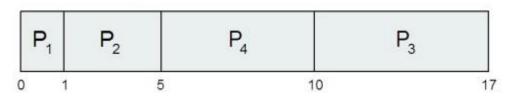
Operating System Concepts – 10th Edition


Silberschatz, Galvin and Gagne ©2018

2.1 Shortest-Job-First (SJF) Scheduling

Process	Burst Time
P_1	6
P_2	8
P_3	7
P_4	3

SJF scheduling chart



2.1 Shortest-Job-First (SJF) (Non-Preemptive SJF)

Now we add the concepts of varying arrival times and preemption to the analysis

Process	Arrival Time	Burst Time
P_1	0	1
P_2	1	4
P_3	2	7
P_4	3	5

□ Non-Preemptive SJF Gantt Chart

Scheduling Algorithms

2.1 Shortest-Job-First (SJF) (Non-Preemptive SJF)

Now we add the concepts of varying arrival times and preemption to the analysis

Process	Arrival Time	Burst Time
P_{I}	0	1
P_2	1	4
P_3	2	7
P_4	3	5

□ Non-Preemptive SJF Gantt Chart

	_	-	D				Waitii	ıg Time	
	1	P ₂	P ₄	P ₃		<i>P</i> ₁	P ₂	P ₃	P ₄
0	1	5	10	17	7	(0-0)	(1 – 1)	(10 - 2)	(5 – 3)

Average waiting time: (0+0+8+2)/4 = 2.5 msec

2.1 Shortest-Job-First (SJF) (Non-Preemptive SJF)

Now we add the concepts of varying arrival times and preemption to the analysis

Process	Arrival Time	Burst Time
P_{I}	0	1
P_2	1	4
P_3	2	7
P_4	3	5

Non-Preemptive SJF Gantt Chart

		-	5	P			Turnar	ound Time	
	P ₁	P ₂	P_4	P ₃		<i>P</i> ₁	P ₂	P ₃	<i>P</i> ₄
0	-	1 5	5 1	0	17	(1-0)	(5 - 1)	(17 – 2)	(10 - 3)

Average Turnaround time: (1 + 4 + 15 + 7)/4 = 6.75 msec

2.1 Shortest-Job-First (SJF) (Non-Preemptive SJF)

Now we add the concepts of varying arrival times and preemption to the analysis

Process	Arrival Time	Burst Time
P_{I}	0	1
P_2	1	4
P_3	2	7
P_4	3	5

□ Non-Preemptive SJF Gantt Chart

		-	5	P			Respo	nse Time	
- 3	P_1	P ₂	P ₄	P ₃		<i>P</i> ₁	P ₂	P ₃	P ₄
0	1	1 5	5 1	0	17	(0-0)	(1 – 1)	(10 - 2)	(5 – 3)

Average Response time: (0 + 0 + 8 + 2)/4 = 2.5 msec

Now we add the concepts of varying arrival times and preemption to the analysis

Process	Arrival Time	Burst Time
P_{I}	0	8
P_2	1	4
P_3	2	9
P_4	3	5

Descriptive SJF Gantt Chart

Scheduling Algorithms

2.2 Shortest-remaining-time-first (Preemptive SJF)

Now we add the concepts of varying arrival times and preemption to the analysis

Process	Arrival Time	Burst Time	
P_{l}	0	\$ 1	ſ I
P_2	1	A B Z	
P_3	2	9	
P_4	3	15	26 ms

Preemptive SJF Gantt Chart

P ₁	P ₂	P ₄	P ₁	P ₃
0 1	5	10	17	26

Process	Arrival Time	Burst Time
P_{I}	0	8
P_2	1	4
P_3	2	9
P_4	3	5

Preemptive SJF Gantt Chart

	P ₁	P ₂			P ₄	F	1	P ₃	
0	-	1	5			10	17	2	26
		Wai	iting T	'ime					
P ₁		P ₂	P	3	P ₄				
10 -	1	1 – 1	17	- 2	5 - 3				
= 9	•	= 0	=	15	= 2	Average wa	aiting time = [[9+0+15+2]/4 = 26/4 = 6	5.5 msec

Process	Arrival Time	Burst Time	
P_{I}	0	8	
P_2	1	4	
P_3	2	9	
P_4	3	5	

Preemptive SJF Gantt Chart

P ₁	P ₂	P ₄	P ₁	P ₃
0	1 8	5 1	10	17 26

Turnaround Time					
P ₁	P ₂	P ₃	P ₄		
1 7 – 0	5 - 1	<mark>26 – 2</mark>	10 - 3		
= 17	= 4	= 24	= 7		

Average turnaround time = [17+4+24+7]/4 = 52/4 = 13 msec

Process	Arrival Time	Burst Time	
P_{I}	0	8	
P_2	1	4	
P_3	2	9	
P_4	3	5	

Preemptive SJF Gantt Chart

P ₁	P ₂	P ₄	P ₁	P ₃
0	1 :	5 1	10 1	7 26

Response Time					
P ₁	P ₂	P ₃	P ₄		
0 - 0	1 – 1	17 – 2	5 - 3		
= 0	= 0	= 15	= 2		

Average response time = [0+0+15+2]/4 = 17/4 = 4.25 msec

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer> highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is priority scheduling where priority is the inverse of predicted next CPU burst time
- Problem>Starvation low priority processes may never execute
- Solution>Aging as time progresses increase the priority of the process

Silberschatz, Galvin and Gagne ©2018

Process	Burst Time	Priority
P_{I}	10	3
P_2	1	1 Highest priority
P_3	2	4
P_4	1	5
P_5	5	2

Priority scheduling Gantt Chart

Process	Burst Time	Priority
P_{I}	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

Priority scheduling Gantt Chart

P2	P ₅	P ₁	Р ₃	P4
0 1	(6 1	6	18 19

Operating System Concepts – 10th Edition

Process	Burst Time	Priority
P_1	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

Priority scheduling Gantt Chart

P2	P 5	P ₁	Р ₃	P4	
0	1 (6 1	6 1	18 1	9

Waiting Time				
P ₁	P ₂	P ₃	P ₄	P_5
6	0	16	18	1

Average Waiting time = [6+0+16+18+1]/5 = 8.2 msec

Operating System Concepts – 10th Edition

Process	Burst Time	Priority
P_1	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

Priority scheduling Gantt Chart

P2	P ₅	P ₁	P ₃	P	1
0 1	(6 1	6	18	19

Turnaround Time				
P ₁	P ₂	P ₃	P ₄	P ₅
16	1	18	19	6

Average Turnaround time = [16+1+18+19+6]/5 = 12 msec

Operating System Concepts – 10th Edition

Process	Burst Time	Priority
P_{I}	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

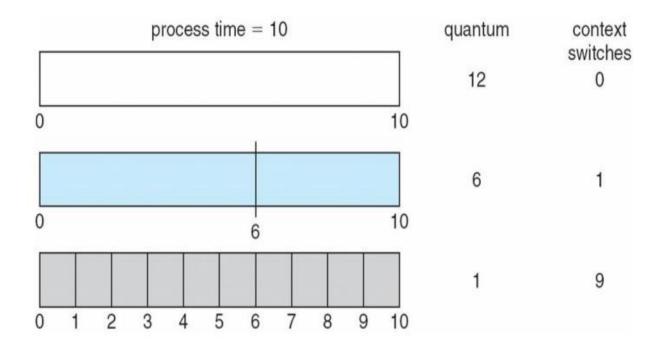
Priority scheduling Gantt Chart

P2	P ₅	P ₁	P ₃	P ₄	
0	1 (6 10	6 1	8 1	9

Response Time				
P ₁	P ₂	P_3	P ₄	P_5
6	0	16	18	1

Average Response time = [6+0+16+18+1]/5 = 8.2 msec

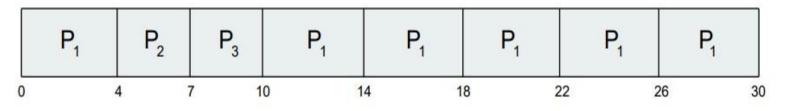
Silberschatz, Galvin and Gagne ©2018


Operating System Concepts – 10th Edition

- Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are *n* processes in the ready queue and the time quantum is *q*, then each process gets 1/n of the CPU time in chunks of at most *q* time units at once.
- No process waits more than (n-1)q time units.

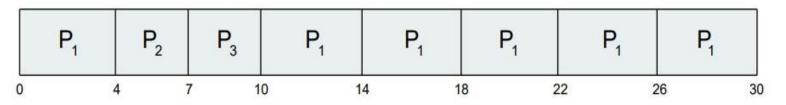
Operating System Concepts – 10th Edition

Process	Burst Time
P_1	24
P_2	3
P_3	3


- All the processes **arrive** at the same time **0**.
- □ Round Robin (RR) scheduling of quantum: 4 ms

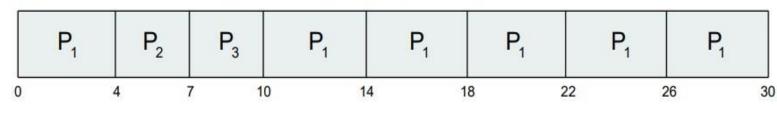
Process	Burst Time
P_1	24
P_2	3
P_3	3

- All the processes **arrive** at the same time **0**.
- Round Robin (RR) scheduling of quantum: 4 ms



Process	Burst Time
P_1	24
P_2	3
P_3	3

- All the processes **arrive** at the same time **0**.
- Round Robin (RR) scheduling of quantum: 4 ms

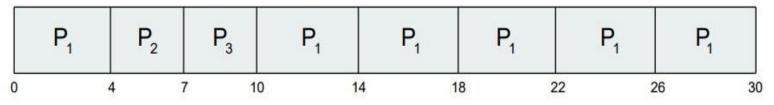

 \square # of context switches = 7

	Process	Burst Time
	P_{I}	24
	P_2	3
	P_3	3
4 11 .1	• • • •	

- □ All the processes **arrive** at the same time **0**.
- Round Robin (RR) scheduling of quantum: 4 ms

Waiting Time		
P ₁	P ₂	P_3
0 + (10 - 4)	4	7

Average waiting time: (6 + 4 + 7)/3 = 5.667 ms



Process	Burst Time
P_{I}	24
P_2	3
P_3	3

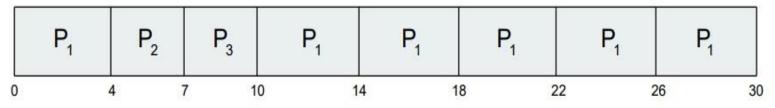
 $\square All the processes arrive at the same time$ **0**.

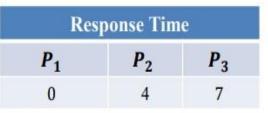
Round Robin (RR) scheduling of quantum: 4 ms

Turnaround Time		
P ₁	P ₂	P ₃
30	7	10

Average Turnaround time: (30 + 7 + 10)/3 = 15.667 ms

Silberschatz, Galvin and Gagne ©2018


Operating System Concepts – 10th Edition



Process	Burst Time
P_1	24
P_2	3
P_3	3

All the processes **arrive** at the same time **0**.

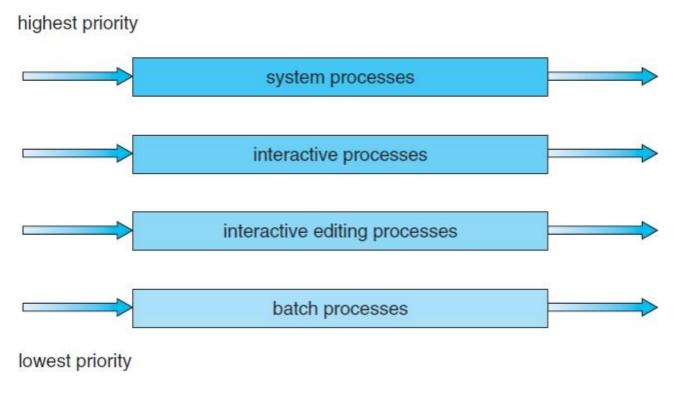
Round Robin (RR) scheduling of quantum: 4 ms

Average Response time: (0 + 4 + 7)/3 = 3.667 ms

Silberschatz, Galvin and Gagne ©2018



- Ready queue is partitioned into separate queues, ex:
 - **foreground** (interactive)
 - **background** (batch)
- Process permanently in a given queue
- Each queue has its own scheduling algorithm:
 - foreground RR.
 - background FCFS


- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR.
 - 20% to background in FCFS.

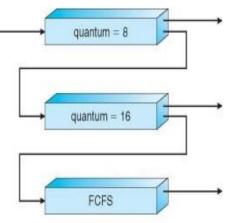
Scheduling Algorithms

5. Multilevel Queue Scheduling

Silberschatz, Galvin and Gagne ©2018

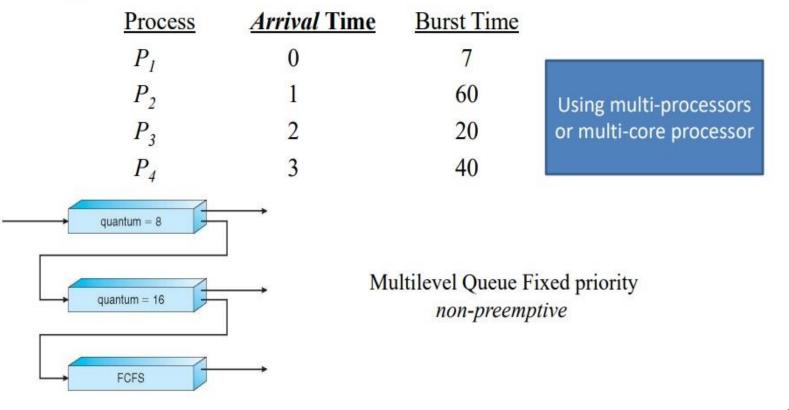
Operating System Concepts – 10th Edition

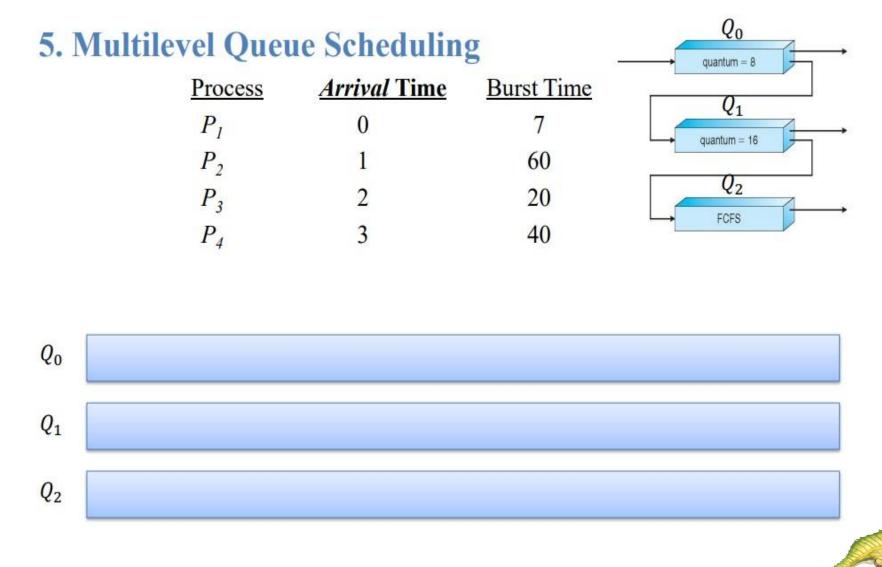
□ Three queues:


- \square $Q_0 \mathbf{RR}$ with time quantum 8 milliseconds
- \square $Q_1 \mathbf{RR}$ time quantum **16** milliseconds
- $\Box Q_2 FCFS$ quantum = 8 quantum = 16 FCFS

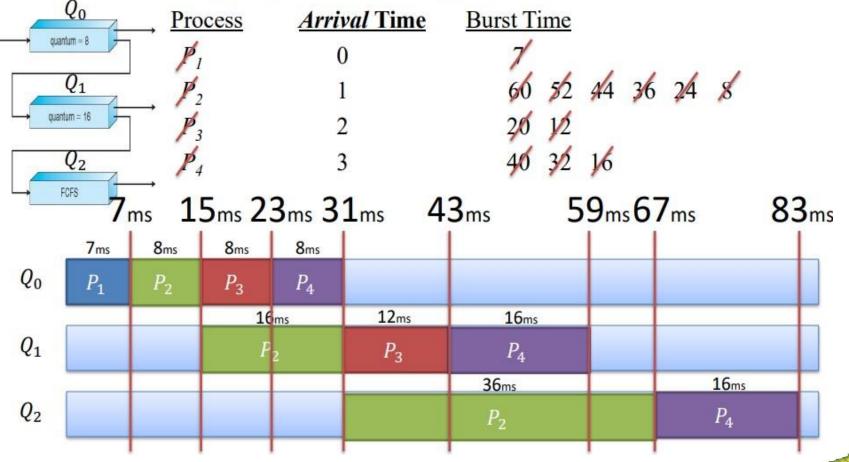
Scheduling Algorithms

5. Multilevel Queue Scheduling□ Scheduling


- \square A new job enters queue Q_0 which is served FCFS
 - When it gains CPU, job receives 8 milliseconds.
 - If it does not finish in 8 milliseconds, job is moved to queue Q_1 .
- At Q₁ job is again served FCFS and receives 16 additional milliseconds
 If it still does not complete, it is preempted and moved to queue Q₂.

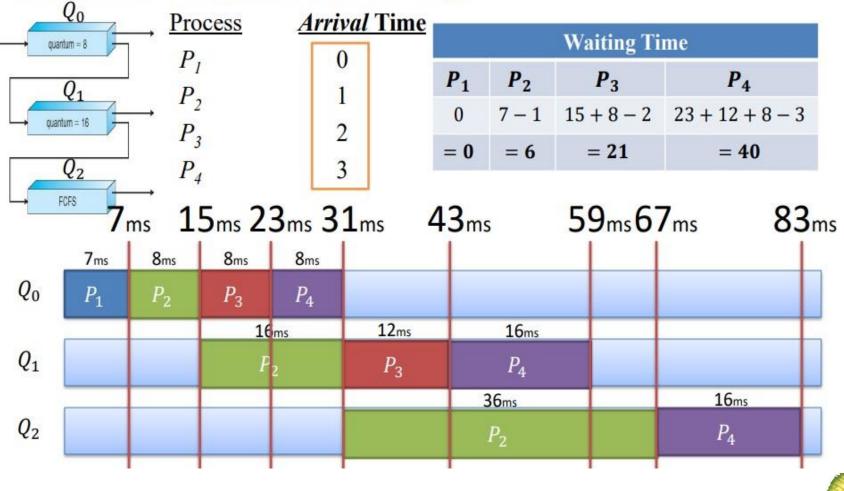


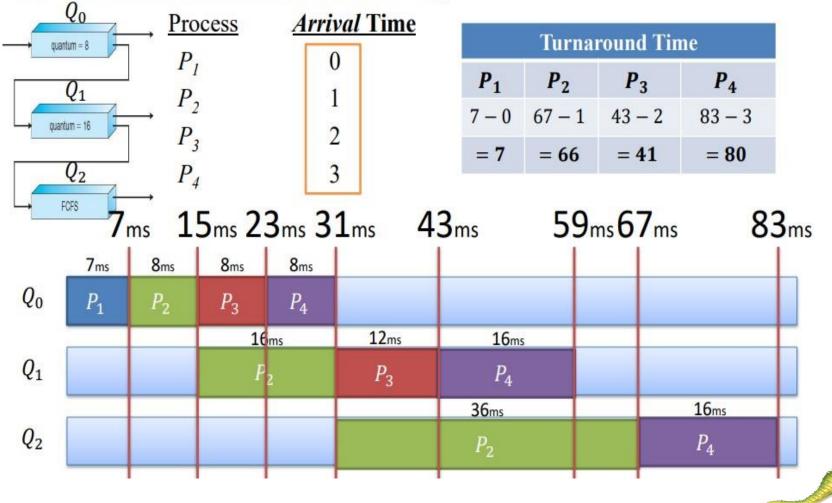
Now we add the concepts of varying arrival times and preemption to the analysis


Scheduling Algorithms

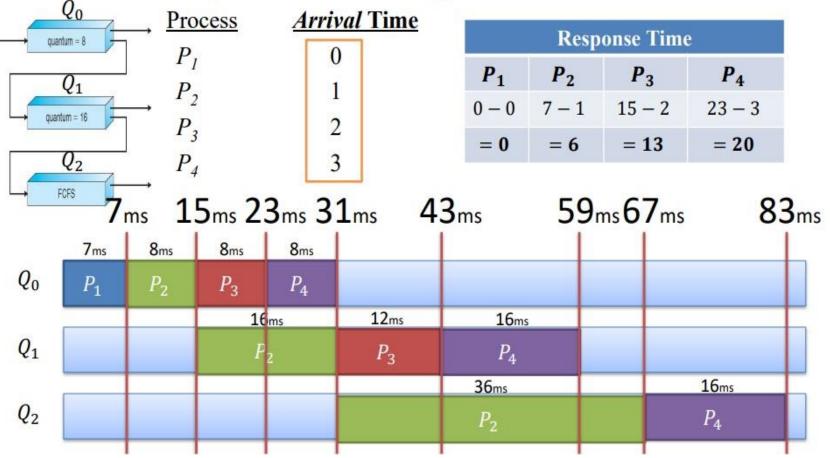
Operating System Concepts – 10th Edition

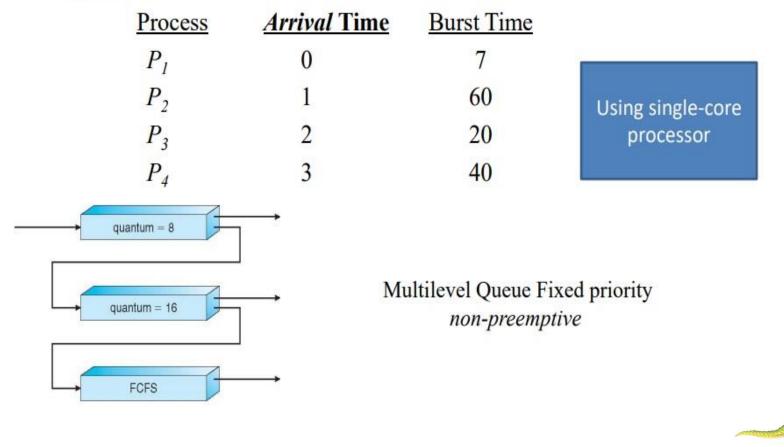
Silberschatz, Galvin and Gagne ©2018




Operating System Concepts – 10th Edition

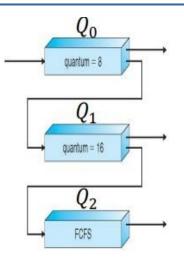
Silberschatz, Galvin and Gagne ©2018





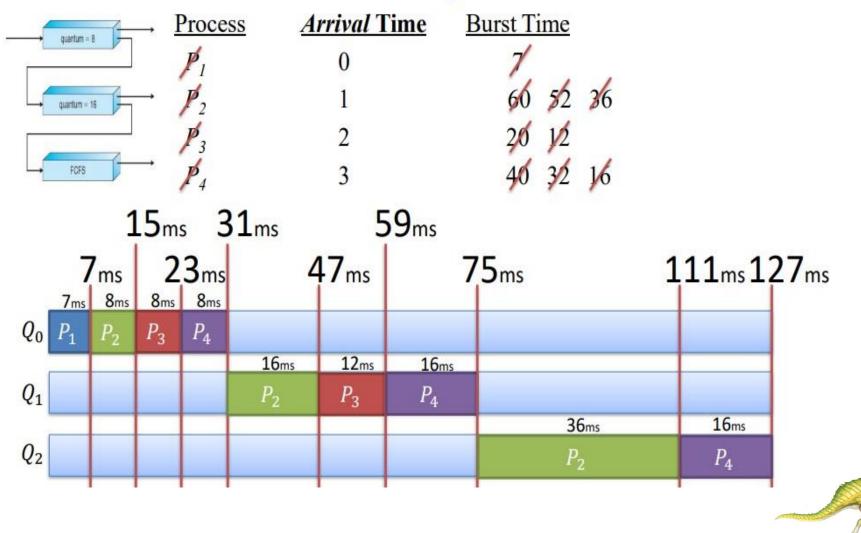
Silberschatz, Galvin and Gagne ©2018

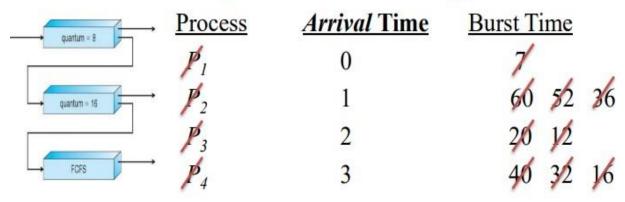
Now we add the concepts of varying arrival times and preemption to the analysis

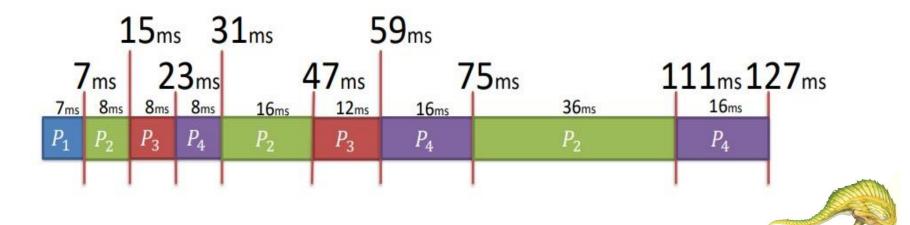


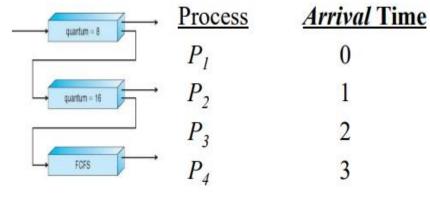
Scheduling Algorithms

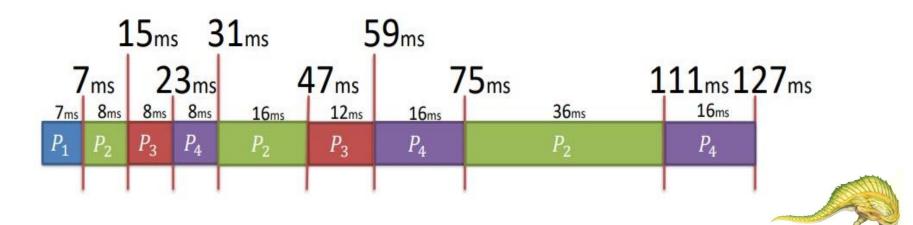
5. Multilevel Queue Scheduling


Process	Arrival Time	Burst Time	
P_1	0	7	
P_2	1	60	
P_3	2	20	
P_4	3	40	




Operating System Concepts – 10th Edition

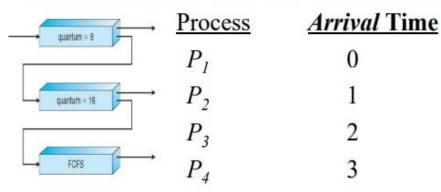




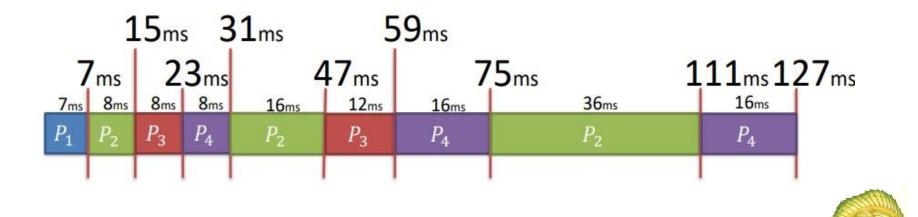
Waiting Time			
P ₁	P ₂	P ₃	P_4
0	6 + 16 + 28	13 + 24	20 + 28 + 36
= 0	= 50	= 37	= 84

Operating System Concepts – 10th Edition

Silberschatz, Galvin and Gagne ©2018

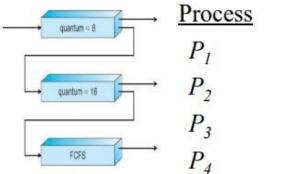


0

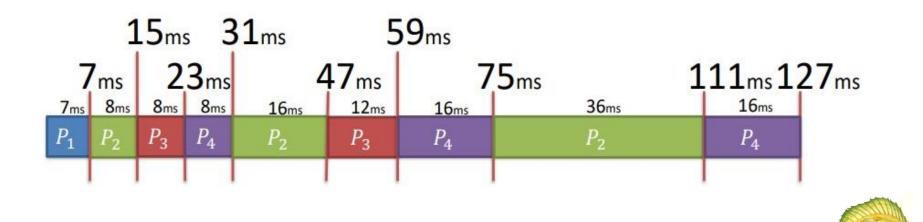

2

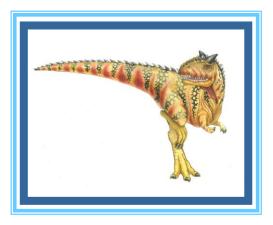
3

5. Multilevel Queue Scheduling


Turnaround Time			
P_1	P ₂	P ₃	P_4
7 – 0	111 – 1	59 – 2	127 – 3
= 7	= 110	= 57	= 124

Operating System Concepts – 10th Edition


Silberschatz, Galvin and Gagne ©2018



Arrival Tin	val Time	
0		
1		
2		
3		

Response Time			
P ₁	P ₂	P ₃	P ₄
0 - 0	7 – 1	15 – 2	23 - 3
= 0	= 6	= 13	= 20

End of Chapter 5

Operating System Concepts – 10th Edition

Silberschatz, Galvin and Gagne ©2018