Relativistic Effects
Lec 5
M.Sc Sara Jaleel ahmed

- State and discuss Einstein's two postulates regarding special relativity.
- Demonstrate your understanding of time dilation and apply it to physical problems.
- Demonstrate and apply equations for relativistic length, momentum, mass, and energy.

Einstein's Special Theory of Relativity, published in 1905, was based on two postulates:

I. The laws of physics are the same for all frames of reference moving at a constant velocity with respect to each other.

II. The free space velocity of light c is

 constant for all observers, independent of their state of motion. ($c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
Rest and Motion

What do we mean when we say that an object is at rest . . . or in motion? Is anything at rest?

We sometimes say that man, computer, phone, and desk are at rest.

We forget that the Earth is also in motion.

What we really mean is that all are moving with the same velocity. We can only detect motion in reference to something else.

No Preferred Frame of Reference

What is the velocity of the bicyclist?

We cannot say without a frame of reference.

Assume bike moves at $25 \mathrm{~m} / \mathrm{s}, \mathrm{W}$ relative to Earth and that platform moves $10 \mathrm{~m} / \mathrm{s}$, E relative to Earth.

What is the velocity of the bike relative to platform?
Assume that the platform is the reference, then look at relative motion of Earth and bike.

Reference for Motion (Cont.)

To find the velocity of the bike relative to platform, we must imagine that we are sitting on the platform at rest $(0 \mathrm{~m} / \mathrm{s})$ relative to it.

We would see the Earth moving westward at $10 \mathrm{~m} / \mathrm{s}$ and the bike moving west at $35 \mathrm{~m} / \mathrm{s}$.

Consider the velocities for three different frames of reference.

Platform as Reference $35 \mathrm{~m} / \mathrm{s}$

Earth as Reference $25 \mathrm{~m} / \mathrm{s}$ East

West $10 \mathrm{~m} / \mathrm{s}$

Bicycle as Reference

Platform moves $30 \mathrm{~m} / \mathrm{s}$ to right relative to boy.

Outside observer sees very different velocities for balls.

The velocity of light is unaffected by relative motion and is exactly equal to:

$$
c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Tine Measurements

Since our measurement of time involves judgments about simultaneous events, we can see that time may also be affected by relative motion of observers.

In fact, Einstein's theory shows that observers in relative motion will judge times differently furthermore, each is correct.

Relative Time

Consider cart moving with velocity vunder a mirrored ceiling. A light pulse travels to ceiling and back in time Δt_{0} for rider and in time Δt for watcher.

Light path for rider

Light path for watcher A

$$
R=\frac{c \Delta t}{2} ; x=\frac{v \Delta t}{2}
$$

Relative Time (Cont.)

$d . f c=\frac{2 d}{\Delta t_{0}}$
 $\int \frac{1}{\Delta t_{0}}$
 Light path for rider

Substitution of:

$$
d=\frac{c \Delta t}{2}
$$

$$
\left(\frac{c}{2 \Delta} \Delta t=\frac{\Delta t_{0}}{\sqrt{1-v^{2} / c^{2}}} \frac{\Delta t_{0}}{2}\right)^{2}
$$

Einstein's Time
 $$
\Delta t=\frac{\Delta t_{0}}{\sqrt{1-v^{2} / c^{2}}}
$$

$\Delta t=$ Relative time (Time measured in frame moving relative to actual event).
$\Delta t_{0}=$ Proper time (Time measured in the same frame as the event itself).
$v=$ Relative velocity of two frames.
$c=$ Free space velocity of light ($c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$).

The key to applying the time dilation equation is to distinguish clearly between proper time Δt_{0} and relative time Δt. Look at our example:

Example 1: Ship A passes ship B with a relative velocity of 0.8 c (eighty percent of the velocity of light). A woman aboard Ship B takes 4 s to walk the length of her ship. What time is recorded by the man in Ship A?
Proper time $\Delta t_{o}=4 \mathrm{~s}$ Find relative time Δt

$$
\Delta t=\frac{\square \Delta t_{0}}{\sqrt{1-v^{2} / c^{2}}}
$$

$$
\Delta t=\frac{4.00 \mathrm{~s}}{\sqrt{1-(0.8 c)^{2} / c^{2}}}=\frac{4.00 \mathrm{~s}}{\sqrt{1-0.64}} \quad \Delta \mathrm{t}=6.67 \mathrm{~s}
$$

Length Contraction

Since time is affected by relative motion, length will also be different:

$$
L=L_{0} \sqrt{1-v^{2} / c^{2}}
$$

L_{o} is proper length
L is relative length

Moving objects are foreshortened due to relativity.

Example 2: A meter stick moves at 0.9c relative to an observer. What is the relative length as seen by the observer?

$$
\begin{gathered}
L=L_{0} \sqrt{1-v^{2} / c^{2}} \\
L=(1 \mathrm{~m}) \sqrt{1-(0.9 c)^{2} / c^{2}} \\
L=(1 \mathrm{~m}) \sqrt{1-0.81}=0.436 \mathrm{~m}
\end{gathered}
$$

Length recorded by observer: $L=43.6 \mathrm{~cm}$

If the ground observer held a meter stick, the same contraction would be seen from the ship.

The basic conservation laws for momentum and energy can not be violated due to relativity. Newton's equation for momentum (mV) must be changed as follows to account for relativity:

$$
\begin{aligned}
& \text { Relativistic } \\
& \text { momentum: }
\end{aligned}
$$

m_{o} is the proper mass, often called the rest mass. Note that for large values of v, this equation reduces to Newton's equation.

Rerativistic Mass

If momentum is to be conserved, the relativistic mass m must be consistent with the following equation:

$$
\begin{aligned}
& \text { Relativistic } \quad m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}
\end{aligned}
$$

Note that as an object is accelerated by a resultant force, its mass increases, which requires even more force. This means that:

The speed of light is an ultimate speed!

Example 3: The rest mass of an electron is $9.1 \times 10^{-3} / \mathrm{kg}$. What is the relativistic mass if its velocity is 0.8 C ?

$$
m=\frac{\square_{0} m}{\sqrt{1-v^{2} / c^{2}}}
$$

$$
\Theta \longrightarrow 0.8 c
$$

$$
m_{0}=9.1 \times 10^{-31} \mathrm{~kg}
$$

$$
m=\frac{9.1 \times 10^{-31} \mathrm{~kg}}{\sqrt{1-(0.6 c)^{2} / c^{2}}}=\frac{9.1 \times 10^{-31} \mathrm{~kg}}{\sqrt{0.36}}
$$

$$
m=15.2 \times 10^{-31} \mathrm{~kg}
$$

The mass has increased by 67\%!

Total Relativistic Energy

The general formula for the relativistic total energy involves the rest mass m_{0} and the relativistic momentum $p=m v$.

Total Energy, $E \quad E=\sqrt{\left(m_{0} c^{2}\right)+p^{2} c^{2}}$

For a particle with zero momentum $p=0$:

$$
E=m_{0} c^{2}
$$

For an EM wave, $\mathrm{m}_{0}=0$, and Esimplifies to:

$$
E=p c
$$

Mass and Energy (Cont.)

The conversion factor between mass m and energy E is:

$$
E_{o}=m_{o} c^{2}
$$

The zero subscript refers to proper or rest values. A 1-kg block on a table has an energy E_{o} and mass m_{o} relative to table:

$E_{o}=(1 \mathrm{~kg})\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}$

$$
E_{o}=9 \times 10^{16} \mathrm{~J}
$$

If the $1-\mathrm{kg}$ block is in relative motion, its kinetic energy adds to the total energy.

According to Einstein's theory, the total energy Eof a particle of is given by:

$$
\text { Total Energy: } \left.\quad E=m c^{2} \quad\right) m_{0} c^{2}+K(
$$

Total energy includes rest energy and energy of motion. If we are interested in just the energy of motion, we must subtract $m_{0} c^{2}$.

Kinetic Energy: $K=m c^{2}-m_{0} c^{2}$

Kinetic Energy: $\quad K=\left(m-m_{0}\right) c^{2}$

Example 4: What is the kinetic energy of a proton $\left(m_{0}=1.67 \times 10-27 \mathrm{~kg}\right)$ traveling at 0.8 c ?

$$
m=\frac{\square_{0} m}{\sqrt{1-v^{2} / c^{2}}}
$$

$$
\oplus \longrightarrow 0.7 c
$$

$$
m_{0}=1.67 \times 10^{-27} \mathrm{~kg}
$$

$$
m=\frac{1.67 \times 10^{-27} \mathrm{~kg}}{\sqrt{1-(0.7 c)^{2} / c^{2}}}=\frac{1.67 \times 10^{27} \mathrm{~kg}}{\sqrt{0.51}} ; \mathrm{m}=2.34 \times 10^{-27} \mathrm{~kg}
$$

$$
K=\left(m-m_{0}\right) c^{2}=\left(2.34 \times 10^{-27} \mathrm{~kg}-1.67 \times 10^{-17} \mathrm{~kg}\right) c^{2}
$$

Relativistic Kinetic Energy $K=6.02 \times 10^{-11} \mathrm{~J}$

Einstein's Special Theory of Relativity, published in 1905, was based on two postulates:

I. The laws of physics are the same for all frames of reference moving at a constant velocity with respect to each other.

II. The free space velocity of light c is

 constant for all observers, independent of their state of motion. ($c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (
Summary

Relativistic
 $$
\Delta t=\frac{\Delta t_{0}}{\sqrt{1-v^{2} / c^{2}}}
$$

Relativistic length:

$$
L=L_{0} \sqrt{1-v^{2} / c^{2}}
$$

Relativistic

$$
m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}
$$

Relativistic momentum:

$$
p=\frac{m_{0} v}{\sqrt{1-v^{2} / c^{2}}}
$$

Total energy: $\quad E=m c^{2}$

Kinetic energy: $K=\left(m-m_{0}\right) c^{2}$

