Euclidean algorithm

One of the basic techniques of number theory is the Euclidean algorithm, which is a simple procedure for determining the greatest common divisor of two positive integers. Let a and b be integers, not both zero. Recall that GCD (a, b) is the greatest common divisor of a and b. The best general algorithm for computing $\operatorname{GCD}(\mathrm{a}, \mathrm{b})$ (and the only practical algorithm, unless the prime factorizations of a and b are known) is due to Euclid. This algorithm (known as Euclid"s Algorithm or the Euclidean Algorithm) involves repeated application of the Division Algorithm. In another word, given any positive integer n and any positive integer a , if we divide a by b , we get an integer q quotient and an integer r remainder that obey the following relationship:

$$
a=q b+r \quad 0 \leq r<b
$$

If have two numbers c, q that $c=q * d+r$, then $\operatorname{GCD}(c, q)=G C D(d, r)$

Ex1: find the Greatest Common Divisor (GCD) between 132 and 55 by using Euclid's Algorithm.

$$
\begin{aligned}
& 132=55 * 2+22 \\
& 55=22 * 2+11 \\
& 22=11 * 2+0
\end{aligned}
$$

Stopping when getting zero 0 then GCD is 11:
$\operatorname{GCD}(132,55)=\operatorname{GCD}(55,22)=\operatorname{GCD}(22,11)=\operatorname{GCD}(11,0)=11$
Ex2: find the GCD (252, 198) by using Euclid's Algorithm.
$252=198 * 1+54$
$198=54 * 3+36$
$54=36 * 1+18$
$36=18 * 2+0$
$\operatorname{GCD}(252,198)=(198,54)=(54,36)=(36,18)=(18,0)=18$.
Example: Compute the greatest common divisor (GCD) between the numbers (831, 366(.

Solution:

831	$=2 \times 366+99$	
366	$=3 \times 99$	+69
99	$=1 \times 69$	+30
69	$=2 \times 30$	+9
30	$=3 \times 9$	+3
9	$=3 \times 3$	+0

The answer is revealed as the last nonzero remainder: $\operatorname{gcd}(831,366)=3$
Note: Because we require that the greatest common divisor be positive $\operatorname{GCD}(\mathrm{a}, \mathrm{b})$

$$
\begin{aligned}
= & \operatorname{GCD}(a, \quad-b)=\operatorname{GCD}(-a, \quad b)=\operatorname{GCD}(-a,-b) . \quad \text { In general, } \\
& \operatorname{GCD}(a, \quad b)
\end{aligned}
$$

$=\operatorname{GCD}(/ \mathrm{a} /, / \mathrm{b} / \mathrm{)}$.
Example: Find the the greatest common divisor

$$
\text { (GCD) of } a=321805575, b=198645
$$

Solution:

321805575	$=1620 * 198645$	+675
198645	$=294 * 675$	+195
675	$=3 * 195$	+90
195	$=2 * 90$	+15
90	$=6 * 15$	+0

The answer is revealed as the last nonzero remainder: GCD (321805575, 198645) $=15$

H.W.

Now you try some: Answers		
(a) $\operatorname{gcd}(24,54)=6$		
(b) $\operatorname{gcd}(18,42)=6$	(c) $\operatorname{gcd}(244,354)=2$	(e) $\operatorname{gcd}(2415,3289)=23$
(d) $\operatorname{gcd}(128,423)=1$	(f) $\operatorname{gcd}(4278,8602)=46$	
(g) $\operatorname{gcd}(406,555)=1$		

