Euclidean algorithm

One of the basic techniques of number theory is the Euclidean algorithm, which is a simple procedure for determining the greatest common divisor of two positive integers. Let a and b be integers, not both zero. Recall that GCD (a, b) is the greatest common divisor of a and b. The best general algorithm for computing GCD (a, b) (and the only practical algorithm, unless the prime factorizations of a and b are known) is due to Euclid. This algorithm (known as Euclid''s Algorithm or the Euclidean Algorithm) involves repeated application of the Division Algorithm. In another word, given any positive integer n and any positive integer a, if we divide a by b, we get an integer q quotient and an integer r remainder that obey the following relationship:

$$a = q b + r \qquad 0 \le r < b$$

If have two numbers c,q that c=q*d+r, then GCD(c,q)=GCD(d,r)

<u>Ex1:</u> find the Greatest Common Divisor (GCD) between 132 and 55 by using Euclid's Algorithm.

132 = 55 * 2 + 22 55 = 22 * 2 + 1122 = 11 * 2 + 0

Stopping when getting zero 0 then GCD is 11:

GCD(132,55) = GCD(55,22) = GCD(22,11) = GCD(11,0) = 11

Ex2: find the GCD (252, 198) by using Euclid's Algorithm.

252 = 198 * 1 + 54 198 = 54 * 3 + 36 54 = 36 * 1 + 1836 = 18 * 2 + 0

GCD(252,198) = (198,54) = (54,36) = (36,18) = (18,0) = 18.

Example: Compute the greatest common divisor (GCD) between the numbers (831, 366(.

Solution:

831	=	2 × 366	+ 99
366	=	3 × 99	+ 69
99	=	1 × 69	+ 30
69	=	2×30	+ 9
30	=	3 × 9	+ 3
9	=	3 × 3	+ 0

The answer is revealed as the last nonzero remainder: gcd (831, 366) = 3

Note: Because we require that the greatest common divisor be positive GCD (a, b)

= GCD (a, -b) = GCD (-a, b) = GCD(-a,-b). In general, GCD(a, b)

= GCD(/ a / , / b /).

Example: Find the the greatest common divisor (GCD) of a=321805575, b=198645

Solution:

321805575	=	1620 * 198645	+ 675
198645	=	294 * 675	+ 195
675	=	3 * 195	+ 90
195	=	2 * 90	+ 15
90	=	6 * 15	+ 0

The answer is revealed as the last nonzero remainder: GCD (321805575, 198645) = 15

<u>H.W.</u>

	Now you try some: Ans	wers
(a) gcd(24, 54) = 6 (b) gcd(18, 42) = 6	(c) gcd(244, 354) = 2 (d) gcd(128, 423) = 1	(e) gcd(2415, 3289) = 23 (f) gcd(4278, 8602) = 46 (g) gcd(406, 555) = 1