Multiplicative Inverses Modulo n

Any positive integer that is less than n and relatively prime to n has a multiplicative inverse modulo n. This is a consequence of the Euclidean algorithm. We will see in the example below why this must be so. Any positive integer that is less than n and not relatively prime to n does not have a multiplicative inverse modulo n.

Example: find the multiplicative Inverse of 17 mod 43

```
Find GCD (17, 43)

43=17*2+9 \rightarrow 9=43-17*2

17=9*1+8 \rightarrow 8=17-9*1

9=8*1+0 \rightarrow 1=9-8

So, GCD (17, 43) = 1
```

Now, do the "backward part" of the algorithm (this is often called the "extended Euclidean algorithm)— expressing 1 as a combination of 17 and 43.

```
1=9-8 →8=17-9*1

1=9-17+9

1=2*9-17→ 9=43-17*2

1=2(43-17*2)-17

1=2*43-4*17-17

2*43 mod 43=0

1=0-5*17

1= -5*17

-5 mod 43 =38

X=38

For prove

17*38 mod 43=1

646 mod 43=1
```

Example: find the multiplicative Inverse of 15 mod 26 **Solution**: First, do the "forward part" of the Euclidean algorithm – finding the GCD.

$$26 = 1 \times 15 + 11$$

 $15 = 1 \times 11 + 4$
 $11 = 2 \times 4 + 3$
 $4 = 1 \times 3 + 1$

So, GCD
$$(15, 26) = 1$$
.

Now, do the "backward part" of the algorithm (this is often called the "extended Euclidean algorithm)— expressing 1 as a combination of 15 and 26.

$$1 = 4 - 1 \times 3$$

$$1 = 4 - 1 \times (11 - 2 \times 4)$$

$$1 = 3 \times 4 - 1 \times 11$$

$$1 = 3 \times (15 - 1 \times 11) - 1 \times 11$$

$$1 = 3 \times 15 - 4 \times 11$$

$$1 = 3 \times 15 - 4 \times (26 - 1 \times 15)$$

$$1 = 7 \times 15 - 4 \times 26$$

So,
$$1 = 7 \times 15 - 4 \times 26$$
.

Finally, "go mod 26." Because $26 = 0 \mod 26$, when we "go mod 26," the equation 1 =

 $7\times\!15-4\times26$ becomes the congruence1 = $7\times\!15 mod~26$. So, the inverse of 15

modulo 26 is 7 (and the inverse of 7 modulo 26 is 15).

To find the multiplicative inverse of 15 modulo 26, we need to find a number b such that $15 \times b \equiv 1 \pmod{26}$.

We can use the Extended Euclidean Algorithm to find the inverse, or we can use trial and error.

Let's try using trial and error:

$$15 \times 1 \equiv 15 \pmod{26}$$

 $15 \times 2 \equiv 30 \equiv 4 \pmod{26}$
 $15 \times 3 \equiv 45 \equiv 19 \pmod{26}$
 $15 \times 4 \equiv 60 \equiv 8 \pmod{26}$
 $15 \times 5 \equiv 75 \equiv 23 \pmod{26}$
 $15 \times 6 \equiv 90 \equiv 12 \pmod{26}$
 $15 \times 7 \equiv 105 \equiv 1 \pmod{26}$

So, we found that $15 \times 7 \equiv 1 \pmod{26}$.

Therefore, the multiplicative inverse of $15\ \mathrm{modulo}\ 26\ \mathrm{is}\ 7.$

Example: find the multiplicative Invers of 19 mod 26

$$26 = 19 * 1 + 7$$
 $19 = 7 * 2 + 5$
 $7 = 5 * 1 + 2$
 $5 = 2 * 2 + 1$
 $2 = 2 * 1 + 0$
Now, do the "backward part" of the algorithm $1 = 5 - 2*2$
 $1 = 5 - 2(7 - 5*1)$
 $1 = 5*3 - 2*7$
 $1 = (19 - 7*2)*3 - 2*7$
 $1 = 3*19 - 8*7$
 $1 = 3*19 - 8(26 - 19*1)$
 $1 = 11*19 - 8*26$
 $1 = 11*19 \mod 26$

So, we conclude that 11 is the multiplicative inverse of 19 modulo 26.

Example: find the multiplicative Inverse of 17 mod 43

```
43=17*2+9 \Rightarrow 9=43-17*2
17=9*1+8 \Rightarrow 8=17-9*1
9=8*1+0 \Rightarrow 1=9-8
So, GCD (17, 43) = 1
Now, do the "backward part" of the algorithm (this is often called the "extended Euclidean algorithm)— expressing 1 as a combination of 17 and 43.
1=9-8 \Rightarrow 8=17-9*1
1=9-17+9
1=2*9-17 \Rightarrow 9=43-17*2
1=2(43-17*2)-17
1=2*43-4*17-17
2*43 \mod 43=0
1=0-5*17
1=-5*17
```

For prove 17*38 mod 43=1 646 mod 43=1

 $-5 \mod 43 = 38$

Find GCD (17, 43)

Inverse

X = 38

To find $11^7 \mod 13$, we can proceed as follows: $11^2 = 121 \equiv 4 \pmod{13}$ $11^4 = (11^2)^2 \equiv 4^2 \equiv 3 \pmod{13}$ $11^7 = 11 \times 11^2 \times 11^4$ $11^7 \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2 \pmod{13}$

```
X= a<sup>p-2</sup> mod p P must be Prime

15<sup>-1</sup> mod 17 =8 17 must be Prime

15<sup>17-2</sup> mod 17

15<sup>15</sup> mod 17

15<sup>5</sup> * 15<sup>5</sup> * 15<sup>5</sup> mod 17

15<sup>5</sup> = 759375 mod 17 =2

2 * 2 * 2 =8

Sul2:

15<sup>-1</sup> mod 17 =8

17+17=34+1 / 15=2.3

34+17=51+1 / 15=3.4

51+17=68+1 / 15=4.6

68+17=85+1 / 15=5.7

85+17=102+1 / 15=6.86

102+17=119+1 / 15=8
```

Example: Using the extended Euclidean algorithm, find the multiplicative inverse of $7465 \mod 2464$ gcd(40902, 24240) = $34 \neq 1$, so there is no multiplicative inverse.