Figure 1 shows a group pile in saturated clay. Using the figure, one can estimate the ultimate load-bearing capacity of group piles in the following manner:

Step 1: Determine $\sum Q_{u}=n_{1} n_{2}\left(Q_{b}+Q_{s}\right)$ $Q_{b}=A_{b} 9 C_{u}$, and $Q_{s}=\sum \alpha C_{u} P(\Delta L)$ Where Cu is the undrained cohesion at the pile tip or end
$\sum Q_{u}=n_{1} n_{2}\left[9 A_{b} C_{u}+\sum \alpha C_{u} P(\Delta L)\right]$
Step 1: Determine the ultimate capacity by assuming that the piles in the group act as a block with dimensions $L_{g} * B_{g} * L$. The skin resistance of the block is:
$\sum p_{g} C_{u} \Delta L=\sum 2\left(L_{g}+B_{g}\right) \alpha C_{u} \Delta L$
Calculate the end bearing capacity:

$A_{b} q_{b}=\left(L_{g} B_{g}\right) C_{u} N_{C}^{*}$, thus the bearing capacity of pile group:-
$\sum Q_{u}=L_{g} B_{g} C_{u} N_{C}^{*}+\sum 2\left(L_{g}+B_{g}\right) \alpha C_{u} \Delta L$

Obtain N_{C}^{*} from Fig. 2

Fig.1: Ultimate capacity of group piles in clay

Step3: Compare the values obtained from Eqs. (1) and (2). The lower of the two values is $\mathrm{Qg}(\mathrm{u})$.

Fig. 2 : Variation of Nc^{*} with $\mathrm{Lg} / \mathrm{Bg}$ and L / Bg

The section of a 3×4 group pile in a layered saturated clay is shown in Figure 11.42. The piles are square in cross section ($356 \mathrm{~mm} \times 356 \mathrm{~mm}$). The center-to-center spacing, d, of the piles is 889 mm . Determine the allowable load-bearing capacity of the pile group. Use $\mathrm{FS}=4$. Note that the groundwater table coincides with the ground surface.

Solution

From Eq. (11.120),

$$
\Sigma Q_{u}=n_{1} n_{2}\left[9 A_{p} c_{u(p)}+\alpha_{1} p c_{u(1)} L_{1}+\alpha_{2} p c_{u(2)} L_{2}\right]
$$

From Figure $11.42, c_{u(1)}=50.3 \mathrm{kN} / \mathrm{m}^{2}$ and $c_{u(2)}=85.1 \mathrm{kN} / \mathrm{m}^{2}$.
For the top layer with $c_{u(1)}=50.3 \mathrm{kN} / \mathrm{m}^{2}$,

$$
\frac{c_{u(1)}}{p_{a}}=\frac{50.3}{100}=0.503
$$

From Table 11.10, $\alpha_{1} \approx 0.68$. Similarly,

$$
\begin{gathered}
\frac{c_{u(2)}}{p_{a}}=\frac{85.1}{100} \approx 0.85 \\
\alpha_{2}=0.51 \\
\Sigma Q_{u}=(3)(4)\left[\begin{array}{c}
(9)(0.356)^{2}(85.1)+(0.68)(4 \times 0.356)(50.3)(4.57) \\
+(0.51)(4 \times 0.356)(85.1)(13.72)
\end{array}\right] \\
=14011 \mathrm{kN} \quad
\end{gathered}
$$

For piles acting as a group.

$$
\begin{aligned}
& L_{g}=(3)(0.889)+0.356=3.023 \mathrm{~m} \\
& B_{g}=(2)(0.889)+0.356=2.134 \mathrm{~m}
\end{aligned}
$$

Figure 11.42 Group pile of layered saturated clay

$$
\begin{aligned}
& \frac{L_{g}}{B_{g}}=\frac{3.023}{2.134}=1.42 \\
& \frac{L}{B_{g}}=\frac{18.29}{2.134}=8.57
\end{aligned}
$$

Obtain from Fig. $2 N_{c}^{*}=8.75$ and Eq. 2

```
\SigmaQuu}=\mp@subsup{L}{g}{\prime}\mp@subsup{B}{g}{}\mp@subsup{C}{u(p)}{}\mp@subsup{N}{c}{*}+\sum2(\mp@subsup{L}{g}{}+\mp@subsup{B}{g}{\prime})\mp@subsup{c}{u}{}\Delta
    =(3.023)(2.134)(85.1)(8.75)+(2)(3.023+2.134)[(50.3)(4.57)
        + (85.1) (13.72)]
    = 19217 kN
Hence, }\sum\mp@subsup{Q}{u}{}=14,011\textrm{kN}
    \Sigma \Sigma Q _ { \text { all } } = \frac { 1 4 , 0 1 1 } { F S } = \frac { 1 4 , 0 1 1 } { 4 } \approx 3 5 0 3 \mathrm { kN }
```


Problem1:

The plan of a group pile is shown in Fig. 3. Assume that the piles are embedded in a saturated homogeneous clay having a $C u=86 \mathrm{KN} / \mathrm{m} 2$ Given: diameter of piles ($D=316 \mathrm{~mm}$), center-to-center spacing of piles $\mathrm{d}=600$ mm , and length of piles $\mathrm{L}=20 \mathrm{~m}$. Find the allowable load-carrying capacity of the pile group. Use $\mathrm{F}=3$.

Fig. 3

Problem2:
Redo Problem 1 with the following: center-to-center spacing of piles $=762 \mathrm{~mm}, L=13.7 \mathrm{~m}, D=305 \mathrm{~m}$,
$C_{u}=41.2 \frac{K N}{m 2}, \gamma_{s a t}=\frac{19.24 \mathrm{KN}}{m 3}, F=3$

Problem3:

The section of a (4 * 4) group pile in a layered saturated clay is shown in Fig.4. The piles are square in cross section (356 mm * 356 mm). The center-to-center spacing (d) of the piles is 1 m . Determine the allowable load-bearing capacity of the pile group. Use $F=3$.

Fig. 4

