Karnaugh Map (K-Map)

The second method that used to simplify the Boolean function is the Karnaugh map. K-map basically deals with the technique of inserting the values of the output variable in cells within a rectangle or square grid according to a definite pattern. The number of cells in the K-map is determined by the number of input variables and is mathematically expressed as two raised to the power of the number of input variables, i.e., 2^n , where the number of input variables is n.

Thus, to simplify a logical expression with **two inputs**, we require a Kmap with $(2^2 = 4)$ cells. A **four-input** logical expression would lead to a $(2^4 = 16)$ celled-K-map, and so on.

K-mapping & Minimization Steps

Step 1: generate K-map based on the number of input variables n □ Put a 1 in all specified minterms

 \Box Put a 0 in all other boxes (optional)

Step 2: group all adjacent 1s without including any 0s. All groups must be rectangular and contain a "power-of-2" number of 1s 1, 2, 4, 8, 16, 32, ...

Step 3: define product terms using variables common to all minterms in group

Step 4: sum all essential groups plus a minimal set of remaining groups to obtain a minimum SOP.

1- Two variables K-Map

the the number of squares $= 2 = 2 = 4$						
	Inputs		Decimal	Minterms		Output
	Α	В	equivalent			F
	0	0	0	m_0	$\overline{A}\overline{B}$	
	0	1	1	m1	$\overline{A}B$	
	1	0	2	m_2	$A\overline{B}$	
	1	1	3	m ₃	AB	

Number of input variables are 2 Hence the number of squares $= 2^n = 2^2 = 4$

And K-Map of two variables is:

Example: simplify the Boolean expression by using K-Map

$F = \overline{A}B + AB$

Solution:

Number of input variables are 2 Hence the number of squares $= 2^n = 2^2 = 4$

$$F = B$$

Example: simplify the Boolean expression by using K-Map

$$F(A,B)=\sum m(2,0,3)$$

Solution:

Number of input variables are 2 Hence the number of squares $= 2^n = 2^2 = 4$

 $F(A,B) = \overline{B} + A$

Example: simplify the Boolean expression by using K-Map

$$F = \overline{A}B + \overline{A}\overline{B}$$

Solution:

Number of input variables are 2 Hence the number of squares $= 2^n = 2^2 = 4$

 $F = \overline{A}$

Example: simplify the Boolean expression by using K-Map

$$F(A,B)=\sum m(0,3)$$

Solution:

Number of input variables are 2 Hence the number of squares $= 2^n = 2^2 = 4$

2- Three Variables K-Map

Number of input variables are 3 Hence the number of squares $= 2^n = 2^3 = 8$

The truth table is

Inputs	Decimal	Minterms		Output
A B C	equivalent			F
0 0 0	0	m ₀	$\overline{A}\overline{B}\overline{C}$	
0 0 1	1	m_1	ĀBC	
0 1 0	2	m ₂	$\overline{A}B\overline{C}$	
0 1 1	3	m ₃	ĀBC	
1 0 0	4	m4	$A\overline{B}\overline{C}$	
1 0 1	5	m5	ABC	
1 1 0	6	m ₆	AB C	
1 1 1	7	m ₇	ABC	

And the K-Map of three variables is:

	<u>₿</u> 00	<u></u> ВС 01	<i>BC</i> 11	<i>В</i> <u></u> 10
Ā 0	0	1	3	2
A 1	4	5	7	6

Example: simplify the Boolean expression by using K-Map $F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}BC + \overline{A}B\overline{C}$

Solution:

Number of input variables are 3 Hence the number of squares $= 2^n = 2^3 = 8$

Example: simplify the Boolean expression by using K-Map $F(A, B, C) = \sum m(0, 3, 7, 6)$

Solution:

Number of input variables are 3 Hence the number of squares $= 2^n = 2^3 = 8$

3- Four Variables K-map

Number of input variables are 4 Hence the number of squares $= 2^n = 2^4 = 16$

The truth table is

	Inp	uts		Decimal	Minterms		Output
Α	В	С	D	equivalent			F
0	0	0	0	0	m ₀	$\overline{A}\overline{B}\overline{C}\overline{D}$	
0	0	0	1	1	m ₁	$\overline{A}\overline{B}\overline{C}D$	
0	0	1	0	2	m ₂	$\overline{A}\overline{B}C\overline{D}$	
0	0	1	1	3	m ₃	<i>ĀBCD</i>	
0	1	0	0	4	m 4	$\overline{A}B\overline{C}\overline{D}$	
0	1	0	1	5	m ₅	<i>ĀB̄CD</i>	
0	1	1	0	6	m ₆	<i>ĀBCD</i> ̄	
0	1	1	1	7	m ₇	ĀBCD	
1	0	0	0	8	m ₈	$A\overline{B}\overline{C}\overline{D}$	
1	0	0	1	9	m ₉	ABCD	
1	0	1	0	10	m ₁₀	ABCD	
1	0	1	1	11	m ₁₁	ABCD	
1	1	0	0	12	m ₁₂	<i>ABCD</i>	
1	1	0	1	13	m ₁₃	AB C D	
1	1	1	0	14	m ₁₄	ABCD	
1	1	1	1	15	m ₁₅	ABCD	

	<i>C̄D</i> 00	<i>⊂D</i> 01	<i>CD</i> 11	<i>CD</i> 10
<i>AB</i> 00	0	1	3	2
AB 01 4B	4	5	7	6
11 $A\overline{B}$	12	13	15	14
10	8	9	11	10

And the K-Map of four variables is:

Example: simplify the Boolean expression by using K-Map

 $F(A, B, C, D) = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}C\overline{D} + A\overline{B}\overline{C}\overline{D} + A\overline{B}C\overline{D} + \overline{A}BCD + AB\overline{C}D$ Solution: Number of input variables are 4 Hence the number of squares $= 2^n = 2^4 = 16$

 $F(A, B, C, D) = \overline{B}\overline{D} + \overline{ABCD} + AB\overline{C}D$

Example: simplify the Boolean expression by using K-Map

$$F(A, B, C, D) = \sum_{i=1}^{n} m(0, 2, 4, 6, 12, 14, 15, 8, 10)$$

Solution: Number of input variables are 4 Hence the number of squares $= 2^n = 2^4 = 16$

$$F(A, B, C, D) = \overline{D} + ABC$$