Karnaugh Map (K-Map)

The second method that used to simplify the Boolean function is the Karnaugh map. K-map basically deals with the technique of inserting the values of the output variable in cells within a rectangle or square grid according to a definite pattern. The number of cells in the K-map is determined by the number of input variables and is mathematically expressed as two raised to the power of the number of input variables, i.e., 2^{n}, where the number of input variables is n .

Thus, to simplify a logical expression with two inputs, we require a Kmap with $\left(2^{2}=4\right)$ cells. A four-input logical expression would lead to a $\left(2^{4}=\right.$ 16) celled-K-map, and so on.

K-mapping \& Minimization Steps

Step 1: generate K-map based on the number of input variables n
\square Put a 1 in all specified minterms
\square Put a 0 in all other boxes (optional)
Step 2: group all adjacent 1s without including any 0s. All groups must be rectangular and contain a "power-of-2" number of $1 \mathrm{~s} 1,2,4,8,16,32, \ldots$

Step 3: define product terms using variables common to all minterms in group

Step 4: sum all essential groups plus a minimal set of remaining groups to obtain a minimum SOP.

1- Two variables K-Map

Number of input variables are 2
Hence the number of squares $=2^{\mathrm{n}}=2^{2}=4$

Inputs A		Decimal equivalent	Minterms		Output F
0	0	0	$\mathrm{~m}_{0}$	$\overline{\boldsymbol{A}} \overline{\boldsymbol{B}}$	
0	1	1	$\mathrm{~m}_{1}$	$\overline{\boldsymbol{A}} \boldsymbol{B}$	
1	0	2	$\mathrm{~m}_{2}$	$\boldsymbol{A} \overline{\boldsymbol{B}}$	
1	1	3	$\mathrm{~m}_{3}$	$\boldsymbol{A} \boldsymbol{B}$	

And K-Map of two variables is:

Example: simplify the Boolean expression by using K-Map

$$
F=\bar{A} B+A B
$$

Solution:

Number of input variables are 2
Hence the number of squares $=2^{n}=2^{2}=4$

Example: simplify the Boolean expression by using K-Map

$$
F(A, B)=\sum m(2,0,3)
$$

Solution:
Number of input variables are 2
Hence the number of squares $=2^{n}=2^{2}=4$

$$
\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B})=\bar{B}+A
$$

Example: simplify the Boolean expression by using K-Map

$$
F=\bar{A} B+\bar{A} \bar{B}
$$

Solution:

Number of input variables are 2
Hence the number of squares $=2^{n}=2^{2}=4$

$$
F=\bar{A}
$$

Example: simplify the Boolean expression by using K-Map

$$
F(A, B)=\sum m(0,3)
$$

Solution:

Number of input variables are 2
Hence the number of squares $=2^{n}=2^{2}=4$

2- Three Variables K-Map

Number of input variables are 3
Hence the number of squares $=2^{n}=2^{3}=8$

The truth table is

$\begin{aligned} & \text { Inputs } \\ & \text { A B C } \end{aligned}$	Decimal equivalent	Minterms		Output F
$0 \quad 00$	0	m_{0}	$\bar{A} \bar{B} \bar{C}$	
$0 \quad 0 \quad 1$	1	m_{1}	$\bar{A} \bar{B} C$	
0110	2	m_{2}	$\bar{A} \boldsymbol{B} \bar{C}$	
$0 \quad 11$	3	m_{3}	$\bar{A} B C$	
100	4	m_{4}	$A \bar{B} \bar{C}$	
101	5	m_{5}	$A \bar{B} C$	
110	6	m_{6}	$\boldsymbol{A B} \overline{\boldsymbol{C}}$	
111	7	m_{7}	$A B C$	

And the K-Map of three variables is:

	$\begin{aligned} & \bar{B} \bar{C} \\ & 00 \end{aligned}$	$\begin{aligned} & \bar{B} C \\ & 01 \end{aligned}$	$\underset{11}{B C}$	$\begin{aligned} & B \bar{C} \\ & 10 \end{aligned}$
\bar{A} 0	0	1	3	2
A 1	4	5	7	6

Example: simplify the Boolean expression by using K-Map

$$
F(A, B, C)=\bar{A} \bar{B} \bar{C}+\bar{A} B C+\bar{A} B \bar{C}
$$

Solution:

Number of input variables are 3
Hence the number of squares $=2^{n}=2^{3}=8$

Example: simplify the Boolean expression by using K-Map

$$
F(A, B, C)=\sum m(0,3,7,6)
$$

Solution:

Number of input variables are 3
Hence the number of squares $=2^{\mathrm{n}}=2^{3}=8$

$\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})=\bar{A} \bar{B} \bar{C}+B C+A B$

3- Four Variables K-map

Number of input variables are 4
Hence the number of squares $=2^{n}=2^{4}=16$
The truth table is

Inputs				Decimal	Minterms		Output A
A	B	C	D				
0	0	0	0	0	$\mathrm{~m}_{0}$	$\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}} \overline{\boldsymbol{D}}$	
0	0	0	1	1	$\mathrm{~m}_{1}$	$\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}} \boldsymbol{D}$	
0	0	1	0	2	$\mathrm{~m}_{2}$	$\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \boldsymbol{C} \overline{\boldsymbol{D}}$	
0	0	1	1	3	$\mathrm{~m}_{3}$	$\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \boldsymbol{C} \boldsymbol{D}$	
0	1	0	0	4	$\mathrm{~m}_{4}$	$\overline{\boldsymbol{A}} \boldsymbol{B} \overline{\boldsymbol{C}} \overline{\boldsymbol{D}}$	
0	1	0	1	5	$\mathrm{~m}_{5}$	$\overline{\boldsymbol{A}} \boldsymbol{B} \overline{\boldsymbol{C}} \boldsymbol{D}$	
0	1	1	0	6	$\mathrm{~m}_{6}$	$\overline{\boldsymbol{A}} \boldsymbol{B} \boldsymbol{C} \overline{\boldsymbol{D}}$	
0	1	1	1	7	$\mathrm{~m}_{7}$	$\overline{\boldsymbol{A}} \boldsymbol{B} \boldsymbol{C} \boldsymbol{D}$	
1	0	0	0	8	$\mathrm{~m}_{8}$	$\boldsymbol{A} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}} \overline{\boldsymbol{D}}$	
1	0	0	1	9	$\mathrm{~m}_{9}$	$\boldsymbol{A} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}} \boldsymbol{D}$	
1	0	1	0	10	$\mathrm{~m}_{10}$	$\boldsymbol{A} \overline{\boldsymbol{B}} \boldsymbol{C} \overline{\boldsymbol{D}}$	
1	0	1	1	11	$\mathrm{~m}_{11}$	$\boldsymbol{A} \overline{\boldsymbol{B}} \boldsymbol{C} \boldsymbol{D}$	
1	1	0	0	12	$\mathrm{~m}_{12}$	$\boldsymbol{A} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}} \overline{\boldsymbol{D}}$	
1	1	0	1	13	$\mathrm{~m}_{13}$	$\boldsymbol{A} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}} \boldsymbol{D}$	
1	1	1	0	14	$\mathrm{~m}_{14}$	$\boldsymbol{A} \boldsymbol{B} \boldsymbol{C} \overline{\boldsymbol{D}}$	
1	1	1	1	15	$\mathrm{~m}_{15}$	$\boldsymbol{A} \boldsymbol{B} \boldsymbol{C} \boldsymbol{D}$	

And the K-Map of four variables is:

	$\begin{aligned} & \bar{C} \bar{D} \\ & 00 \end{aligned}$	$\begin{aligned} & \bar{C} D \\ & 01 \end{aligned}$	$\begin{aligned} & C D \\ & 11 \end{aligned}$	$\begin{gathered} C \bar{D} \\ 10 \end{gathered}$
$\begin{array}{r} \bar{A} \bar{B} \\ 00 \end{array}$	0	1	3	2
$\begin{array}{r} \bar{A} B \\ 01 \end{array}$	4	5	7	6
$\begin{array}{r} A B \\ 11 \end{array}$	12	13	15	14
$A \bar{B}$				
10	8	9	11	10

Example: simplify the Boolean expression by using K-Map

$$
F(A, B, C, D)=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C \bar{D}+A \bar{B} \bar{C} \bar{D}+A \bar{B} C \bar{D}+\overline{\bar{A}} B C D+A B \bar{C} D
$$

Solution: Number of input variables are 4
Hence the number of squares $=2^{n}=2^{4}=16$

Example: simplify the Boolean expression by using K-Map

$$
F(A, B, C, D)=\sum m(0,2,4,6,12,14,15,8,10)
$$

Solution: Number of input variables are 4
Hence the number of squares $=2^{n}=2^{4}=16$

$$
F(A, B, C, D)=\bar{D}+A B C
$$

