7.4 Moments of Inertia of Composite Areas

Consider a composite area A made of several component areas $A 1, A 2, A 3, \ldots$. , such as rectangles, triangles, and circles. Therefore, we can obtain the moment of inertia for the composite area A with respect to a given axis by the algebraic sum of the moments of inertia of the areas $A 1, A 2, A 3, \ldots$ with respect to the same axis.

The Moment of Inertia of Common geometrical shapes can be determined in a like manner and the results are summarized below in tabular form.

Table 7.1 Moment of Inertia of Common Shapes

No.	Shape	Figure	I_{C}	$I_{\boldsymbol{x}}$
1	Rectangle		$I_{C}=\frac{b h^{3}}{12}$	$I_{x}=\frac{b h^{3}}{3}$
2	Triangle		$I_{C}=\frac{b h^{3}}{36}$	$I_{x}=\frac{b h^{3}}{12}$
3	Circle		$I_{C}=\frac{\pi r^{4}}{4}$	$I_{x}=\frac{5 \pi r^{4}}{4}$
4	Semicircle		$I_{C}=0.11 r^{4}$	$I_{x}=\frac{\pi r^{4}}{8}$
5	Quarter Circle		$I_{C}=0.055 r^{4}$	$I_{x}=\frac{\pi r^{4}}{16}$

Example No. 1: Determine the moments of inertia and radius of gyration about the x - axes for the shaded area shown

Solution:

Shape	$\boldsymbol{I}_{\boldsymbol{C}}$	\boldsymbol{A}	\boldsymbol{d}	$\boldsymbol{A d}^{\mathbf{2}}$	$\boldsymbol{I}_{\boldsymbol{x}}=\boldsymbol{I}_{\boldsymbol{C}}+\boldsymbol{A d}^{\mathbf{2}}$
Rectangular	$\frac{8 \times 6^{3}}{12}=144$	$6 \times 8=48$	3	432	576
Quarter Circle	-0.055×3^{4} $=-4.455$	$-\frac{\pi}{4} \times 3^{2}=-7.069$	$6-1.273$ $=4.727$	-157.944	-162.4
Triangle	$-\frac{4 \times 3^{3}}{36}=-3$	$-\frac{1}{2} \times 3 \times 4=-6$	1	-6	-9
Sum		34.931			404.6

$\therefore I_{x}=404.6 \mathrm{~cm}^{4}, \quad r_{x}=\sqrt{\frac{I_{x}}{A}}=\sqrt{\frac{404.6}{34.931}}=3.403 \mathrm{~cm}$

Example No. 2: Determine the moments of inertia about the \boldsymbol{y}-axes for the shaded area shown.

Solution:

Shape	$\boldsymbol{I}_{\boldsymbol{C}}$	\boldsymbol{A}	\boldsymbol{d}	$\boldsymbol{A \boldsymbol { d } ^ { \mathbf { 2 } }}$	$\boldsymbol{I}_{\boldsymbol{y}}=\boldsymbol{I}_{\boldsymbol{C}}+\boldsymbol{A d}^{\mathbf{2}}$
Rectangular	$\frac{10 \times 6^{3}}{12}=180$	$6 \times 10=60$	3	540	720
Circle	$-\frac{\pi 2^{4}}{4}=-12.566$	$-\pi \times 2^{2}$ $=-12.566$	3	-113.094	-125.66

Triangle	$-\frac{6 \times 3^{3}}{36}=-4.5$	$-\frac{1}{2} \times 3 \times 6$ $=-9$	5	-225	-229.5
Sum					364.84

$\therefore I_{y}=364.84 \mathrm{~m}^{4}$

Example No. 3: Locate the centroid \bar{y} of the composite area, then determine the moment of inertia of this area about the centroid b axis.

Solution:

Shape	$\boldsymbol{I}_{\boldsymbol{C}}$	\boldsymbol{A}	\boldsymbol{d}	$\boldsymbol{A} \boldsymbol{d}^{\mathbf{2}}$	$\boldsymbol{I}_{\boldsymbol{b}}=\boldsymbol{I}_{\boldsymbol{C}}+\boldsymbol{A d}^{\mathbf{2}}$
Rectangular $\mathbf{1}$	$\frac{6 \times 5^{3}}{12}=62.5$	$6 \times 5=30$	-1.5	67.5	130
Semicircle	$0.11 \times 3^{4}=8.91$	$\frac{\pi}{2} \times 3^{2}$	2.273	73.04	81.95
Rectangular $\mathbf{2}$	$-\frac{4 \times 3^{3}}{12}=-9$	$-4 \times 3=-12$	-0.5	-3	-12
Sum					200

$\therefore I_{b}=200 \mathrm{~m}^{4}$

Problems:

1. Determine the moment of inertia of the composite area about the x and y axis.

Answer: $I x=209 m^{4}, \quad I y=533 m^{4}$
2. Determine the moment of inertia $I y$ of the shaded area about the y axis.

Answer: $I y=1971 \mathrm{~m}^{4}$
3. Determine the moments of inertia of the Z-section about its centroid x and y axes.

Answer: $I x=22.6 \times 10^{6} \mathrm{~mm}^{4}, \quad I y=9.81 \times 10^{6} \mathrm{~mm}^{4}$
4. Determine the moment of inertia of the composite area about the x and y axis.

Answer: $I x=1845 m^{4}, \quad I y=522 m^{4}$

