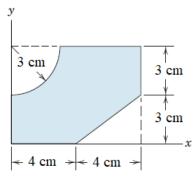
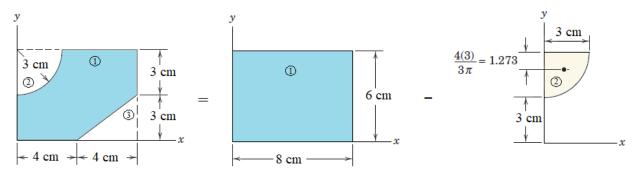
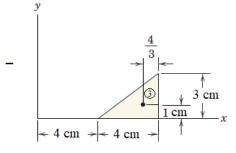


7.4 Moments of Inertia of Composite Areas


Consider a composite area A made of several component areas $A1, A2, A3, \ldots$, such as rectangles, triangles, and circles. Therefore, we can obtain the moment of inertia for the composite area A with respect to a given axis by the *algebraic sum* of the moments of inertia of the areas $A1, A2, A3, \ldots$ with respect to the same axis.

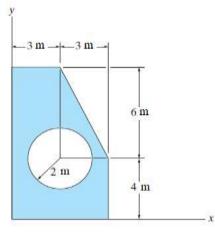
The Moment of Inertia of Common geometrical shapes can be determined in a like manner and the results are summarized below in tabular form.


No.	Shape	Figure	I _C	I _x
1	Rectangle	$\begin{array}{c c} y & y' \\ \hline h \\ \hline h \\ \hline \\ c \\ \hline \\ \hline \\ c \\ \hline \\ c \\ \hline \\ c \\ \hline \\ x \\ \hline \\ x \\ \hline \end{array}$	$I_C = \frac{bh^3}{12}$	$I_x = \frac{bh^3}{3}$
2	Triangle	$ \begin{array}{c} $	$I_C = \frac{bh^3}{36}$	$I_x = \frac{bh^3}{12}$
3	Circle		$I_C = \frac{\pi r^4}{4}$	$I_x = \frac{5\pi r^4}{4}$
4	Semicircle	y c c c x	$I_C = 0.11 r^4$	$I_x = \frac{\pi r^4}{8}$
5	Quarter Circle	y c c c x c x	$I_C = 0.055 r^4$	$I_x = \frac{\pi r^4}{16}$

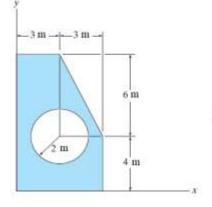

Table 7.1 Moment of Inertia of Common Shapes

Example No. 1: Determine the moments of inertia and radius of gyration about the *x*- axes for the shaded area shown.

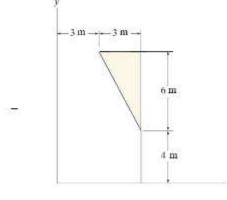
Solution:

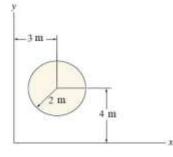


Shape	Ι _C	A	d	Ad ²	$I_x = I_C + Ad^2$
Rectangular	$\frac{8 \times 6^3}{12} = 144$	$6 \times 8 = 48$	3	432	576
Quarter Circle	-0.055×3^4 = -4.455	$-\frac{\pi}{4} \times 3^2 = -7.069$	6 - 1.273 = 4.727	-157.944	-162.4
Triangle	$-\frac{4 \times 3^3}{36} = -3$	$-\frac{1}{2} \times 3 \times 4 = -6$	1	-6	-9
Sum		34.931			404.6


$$\therefore I_x = 404.6 \ cm^4, \qquad r_x = \sqrt{\frac{I_x}{A}} = \sqrt{\frac{404.6}{34.931}} = 3.403 \ cm$$

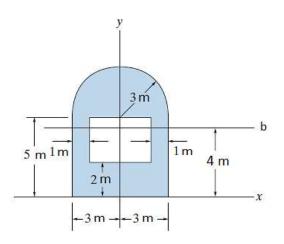
Example No. 2: Determine the moments of inertia about the *y*- axes for the shaded


area shown.

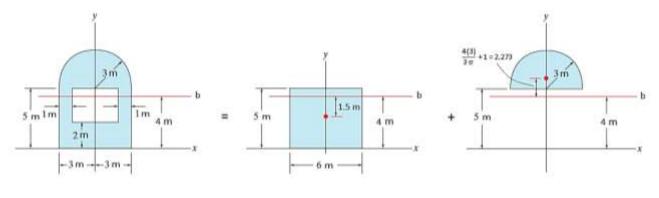

Solution:

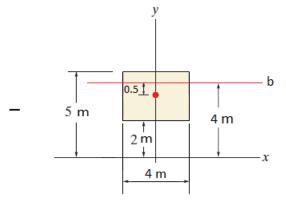
-

	10	m	-



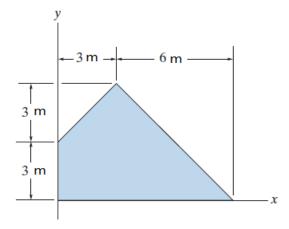
Shape	I _C	Α	d	Ad^2	$I_y = I_C + Ad^2$
Rectangular	$\frac{10 \times 6^3}{12} = 180$	$6 \times 10 = 60$	3	540	720
Circle	$-\frac{\pi \ 2^4}{4} = -12.566$	$-\pi \times 2^2$ $= -12.566$	3	-113.094	-125.66


Triangle	$-\frac{6 \times 3^3}{36} = -4.5$	$-\frac{1}{2} \times 3 \times 6$ $= -9$	5	-225	-229.5
Sum					364.84


$\therefore I_y = 364.84 m^4$

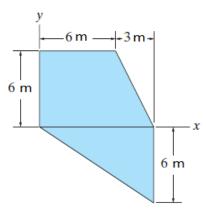
Example No. 3: Locate the centroid \bar{y} of the composite area, then determine the moment of inertia of this area about the centroid *b* axis.

Solution:



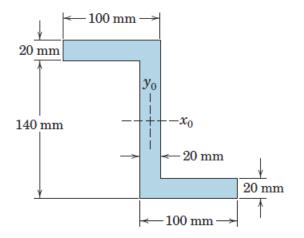
Shape	Ι _C	Α	d	Ad ²	$I_b = I_C + Ad^2$
Rectangular 1	$\frac{6 \times 5^3}{12} = 62.5$	$6 \times 5 = 30$	-1.5	67.5	130
Semicircle	$0.11 \times 3^4 = 8.91$	$\frac{\pi}{2} \times 3^2$ $= 14.137$	2.273	73.04	81.95
Rectangular 2	$-\frac{4 \times 3^3}{12} = -9$	$-4 \times 3 = -12$	-0.5	-3	-12
Sum					200

 $\therefore I_b = 200 m^4$

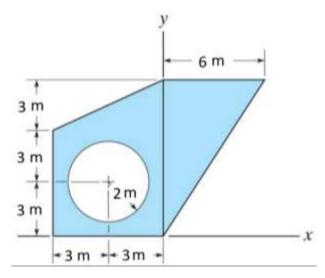

Problems:

1. Determine the moment of inertia of the composite area about the x and y axis.

Answer: $Ix = 209 m^4$, $Iy = 533 m^4$


2. Determine the moment of inertia *Iy* of the shaded area about the *y* axis.

139


Answer: $Iy = 1971 m^4$

3. Determine the moments of inertia of the Z-section about its centroid x and y axes.

Answer: $Ix = 22.6 \times 10^6 mm^4$, $Iy = 9.81 \times 10^6 mm^4$

4. Determine the moment of inertia of the composite area about the x and y axis.

Answer: $Ix = 1845 m^4$, $Iy = 522 m^4$