
All of the members and structures that we have considered so far were
assumed to remain at the same temperature while they were being
loaded. We are now going to consider various situations involving
changes in temperature.

Let us first consider a homogeneous rod AB of uniform cross sec-
tion, which rests freely on a smooth horizontal surface (Fig. 2.34a). If
the temperature of the rod is raised by we observe that the rod elon-
gates by an amount which is proportional to both the temperature
change and the length L of the rod (Fig. 2.34b). We have

(2.21)

where is a constant characteristic of the material, called the coeffi-
cient of thermal expansion. Since and L are both expressed in units
of length, represents a quantity per degree C, or per degree F, de-
pending whether the temperature change is expressed in degrees Cel-
sius or in degrees Fahrenheit.

With the deformation must be associated a strain Re-
calling Eq. (2.21), we conclude that

(2.22)

The strain is referred to as a thermal strain, since it is caused by the
change in temperature of the rod. In the case we are considering here,
there is no stress associated with the strain 

Let us now assume that the same rod AB of length L is placed be-
tween two fixed supports at a distance L from each other (Fig. 2.35a).
Again, there is neither stress nor strain in this initial condition. If we
raise the temperature by the rod cannot elongate because of the re-
straints imposed on its ends; the elongation of the rod is thus zero.
Since the rod is homogeneous and of uniform cross section, the strain

at any point is and, thus, also zero. However, the supports
will exert equal and opposite forces P and on the rod after the tem-
perature has been raised, to keep it from elongating (Fig. 2.35b). It thus
follows that a state of stress (with no corresponding strain) is created in
the rod.
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As we prepare to determine the stress created by the temperature
change we observe that the problem we have to solve is statically
indeterminate. Therefore, we should first compute the magnitude P of
the reactions at the supports from the condition that the elongation of
the rod is zero. Using the superposition method described in Sec. 2.9,
we detach the rod from its support B (Fig. 2.36a) and let it elongate
freely as it undergoes the temperature change (Fig. 2.36b). Ac-
cording to formula (2.21), the corresponding elongation is

Applying now to end B the force P representing the redundant reaction,
and recalling formula (2.7), we obtain a second deformation (Fig. 2.36c)

Expressing that the total deformation must be zero, we have

from which we conclude that

and that the stress in the rod due to the temperature change is

(2.23)

It should be kept in mind that the result we have obtained here and
our earlier remark regarding the absence of any strain in the rod apply
only in the case of a homogeneous rod of uniform cross section. Any
other problem involving a restrained structure undergoing a change in
temperature must be analyzed on its own merits. However, the same
general approach can be used; i.e., we can consider separately the de-
formation due to the temperature change and the deformation due to
the redundant reaction and superpose the solutions obtained.
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Determine the values of the stress in portions AC and CB of
the steel bar shown (Fig. 2.37) when the temperature of the
bar is knowing that a close fit exists at both of the rigid
supports when the temperature is Use the values

psi and for steel.

We first determine the reactions at the supports. Since the
problem is statically indeterminate, we detach the bar from its
support at B and let it undergo the temperature change

T 75 F 125 F

6.5 106E 29 106



Noting that the forces in the two portions of the bar are
we obtain the following values of the

stress in portions AC and CB of the bar:

We cannot emphasize too strongly the fact that, while the
total deformation of the bar must be zero, the deformations of
the portions AC and CB are not zero. A solution of the prob-
lem based on the assumption that these deformations are zero
would therefore be wrong. Neither can the values of the strain
in AC or CB be assumed equal to zero. To amplify this point,
let us determine the strain in portion AC of the bar. The
strain can be divided into two component parts; one is the
thermal strain produced in the unrestrained bar by the tem-
perature change (Fig. 2.38b). From Eq. (2.22) we write

The other component of is associated with the stress 
due to the force applied to the bar (Fig. 2.38c). From

Adding the two components of the strain in AC, we obtain

A similar computation yields the strain in portion CB of the
bar:

The deformations and of the two portions of the
bar are expressed respectively as

We thus check that, while the sum of the two
deformations is zero, neither of the deformations is zero.
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The corresponding deformation (Fig. 2.38b) is

Applying now the unknown force at end B (Fig. 2.38c), we
use Eq. (2.8) to express the corresponding deformation Sub-
stituting

into Eq. (2.8), we write

Expressing that the total deformation of the bar must be zero
as a result of the imposed constraints, we write

from which we obtain

The reaction at A is equal and opposite.
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The -in.-diameter rod CE and the -in.-diameter rod DF are attached to the
rigid bar ABCD as shown. Knowing that the rods are made of aluminum and
using determine (a) the force in each rod caused by the
loading shown, (b) the corresponding deflection of point A.

E 10.6 106 psi,
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Statics. Considering the free body of bar ABCD, we note that the reac-
tion at B and the forces exerted by the rods are indeterminate. However, using
statics, we may write

(1)

Geometry. After application of the 10-kip load, the position of the bar
is From the similar triangles and we have

(2)

(3)

Deformations. Using Eq. (2.7), we have

Substituting for and into (2), we write

Force in Each Rod. Substituting for into (1) and recalling that all
forces have been expressed in kips, we have

Deflections. The deflection of point D is

Using (3), we write
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Statics. Considering the free body of the entire assembly, we write

(1)

Deformations. We use the method of superposition, considering as
redundant. With the support at B removed, the temperature rise of the cylinder
causes point B to move down through The reaction must cause a de-
flection equal to so that the final deflection of B will be zero (Fig. 3).

Deflection Because of a temperature rise of the
length of the brass cylinder increases by 
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The rigid bar CDE is attached to a pin support at E and rests on the 30-mm-
diameter brass cylinder BD. A 22-mm-diameter steel rod AC passes through a
hole in the bar and is secured by a nut which is snugly fitted when the tem-
perature of the entire assembly is The temperature of the brass cylinder
is then raised to while the steel rod remains at Assuming that no
stresses were present before the temperature change, determine the stress in
the cylinder.

20.9 10 6 C11.7 10 6 C
E 105 GPaE 200 GPa

Cylinder BD: BrassRod AC: Steel
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Deflection We note that and 

We recall from (1) that and write

But
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