

Boiling

- pool boiling is the boiling of stationary fluids. In pool boiling, the fluid is not forced to flow by a mover such as a pump, and any motion of the fluid is due to natural convection currents and the motion of the bubbles under the influence of buoyancy. As a familiar example of pool boiling, consider the boiling of tap water in a pan on top of a stove. The water is initially at about $15^{\circ} \mathrm{C}$, far below the saturation temperature of $100^{\circ} \mathrm{C}$ at standard atmospheric pressure

- Boiling Regimes and the Boiling Curve

-A natural convection until boiling

A-C nucleate boiling

Transition Boiling
(between Points C and D)

Film Boiling
(beyond Point D)

Heat Transfer Correlations in Pool Boiling

For Nucleate Boiling

Nucleate boiling regime is between ($5^{\circ} \mathrm{C}$ $\leq \Delta T_{\text {excess }} \leq 30^{\circ} \mathrm{C}$)

$$
\dot{q}_{\text {nucleate }}=\mu_{f} h_{f g}\left[\frac{g\left(\rho_{f}-\rho_{v}\right)}{\sigma}\right]^{1 / 2}\left[\frac{C p_{f}\left(T_{w}-T_{s a t}\right)}{C_{s f} h_{f g} P r_{f}^{n}}\right]^{3}
$$

Where $\dot{q}_{\text {nucleate }}=$ nucleate boiling heat flux $\mathrm{W} / \mathrm{m}^{2}$
$\mu_{f}=$ viscosity of liquid $\mathrm{kg} / \mathrm{m} . \mathrm{sec}, h_{f g}=$ enthalpy of evaporation J / kg $\rho_{f}, \rho_{v}=$ density of liquid and vapor respectively in $\mathrm{kg} / \mathrm{m}^{3}$ $\sigma=$ surface tension of liquid-vapor interface N / m
$c p_{f}=$ specific heat of liquid $\mathrm{J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}, T_{w}=$ surface temperature of heater.${ }^{\circ} \mathrm{C}$
$T_{s a t}=$ saturation temperature of fluid $.{ }^{\circ} \mathrm{C}, P r_{f}=$ Prandtl Number of liquid
$C_{s f}=$ experimental constant that depends on surface-fluid compensation
$\mathrm{n}=$ experimental constant that depends on the fluid, $\mathrm{n}=1$ for water and 1.7 for other liquids.

- Peak Heat Flux
- The maximum (or critical) heat flux in nucleate pool boiling was determined theoretically by S. S. Kutateladze in Russia in 1948 and N. Zuber in the United States in 1958 using quite different approaches, and is expressed as
- $\dot{q}_{\text {max }}=C_{c r} h_{f g} \rho_{v}\left[\frac{\sigma g\left(\rho_{f}-\rho_{v}\right)}{\rho_{v}^{2}}\right]^{1 / 4}$
- Where $C_{c r}=$ constant whose value depend on heater geometry
- $C_{c r}=0.131$ for large horizontal cylinders and sphere
- $C_{c r}=0.149$ for large horizontal plate
- Minimum Heat Flux
- Zuber [10] used stability theory to derive the following expression for the minimum heat flux .
- $\dot{q}_{\text {min }}=0.09 \rho_{v} h_{f g}\left[\frac{\sigma g\left(\rho_{f}-\rho_{v}\right)}{\left(\rho_{f}+\rho_{v}\right)^{2}}\right]^{1 / 4}$

Film Boiling TheNusult number for film boiling on a horizontal cylinder or sphere of diameter D is given by
$\overline{N u}_{D}=\frac{\bar{h} D}{k_{v}}=C\left[\frac{g \rho_{v}\left(\rho_{f}-\rho_{v}\right) h_{f g}^{\prime}}{\mu_{f}}\right]^{1 / 4}$
Where k_{v} is the thermal conductivity of the vapor in W/m.K and $C=\left\{\begin{array}{l}0.62 \text { for horizontal cylinder } \\ 0.67 \text { for spheres }\end{array}\right\}$
In film boiling the heat transfer by radiation Is be considered

$$
\begin{gather*}
q_{f i l m}=\bar{h}\left(T_{w}-T_{\text {sat }}\right) \tag{5}\\
\dot{q}_{\text {rad }}=\varepsilon \sigma\left(T_{w}^{4}-T_{\text {sat }}^{4}\right) \tag{6}
\end{gather*}
$$

Where ε is emissivity of the heating surface
And $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
And temperature here in K not ${ }^{o} \mathrm{C}$

$$
\begin{equation*}
\dot{q}_{t o t}=\dot{q}_{f i l m}+\frac{3}{4} \dot{q}_{r a d} \tag{7}
\end{equation*}
$$

$$
{ }^{1} K_{1}=\sigma /\left[g\left(\rho_{l}-\rho_{v}\right) A_{\text {reater }}\right]
$$

Surface tension of some fluids (from Suryanarayana, 1995, originally based on data from Jasper, 1972)

Substance and Temp. Range	Surface Tension, $\sigma, \mathrm{N} / \mathrm{m}^{*}\left(T\right.$ in $\left.{ }^{\circ} \mathrm{C}\right)$
Ammonia, -75 to $-40^{\circ} \mathrm{C}$:	$0.0264+0.000223 \mathrm{~T}$
Benzene, 10 to $80^{\circ} \mathrm{C}:$	$0.0315-0.000129 \mathrm{~T}$
Butane, -70 to $-20^{\circ} \mathrm{C}$:	$0.0149-0.000121 \mathrm{~T}$
Carbon dioxide, -30 to $-20^{\circ} \mathrm{C}:$	$0.0043-0.000160 \mathrm{~T}$
Ethyl alcohol, 10 to $70^{\circ} \mathrm{C}$:	$0.0241-0.000083 \mathrm{~T}$
Mercury, 5 to $200^{\circ} \mathrm{C}:$	$0.4906-0.000205 \mathrm{~T}$
Methyl alcohol, 10 to $60^{\circ} \mathrm{C}:$	$0.0240-0.000077 \mathrm{~T}$
Pentane, 10 to $30^{\circ} \mathrm{C}:$	$0.0183-0.000110 \mathrm{~T}$
Propane, -90 to $-10^{\circ} \mathrm{C}$:	$0.0092-0.000087 \mathrm{~T}$

Example. 1 The bottom of a copper pan, 150 mm in diameter, is maintained at $115^{\circ} \mathrm{C}$ by the heating element of an electric range. Estimate the power required to boil the water in this pan. Determine the evaporation rate. What is the ratio of the surface heat flux to the critical heat flux? What pan temperature is required to achieve the critical heat flux?
Solution: $\mathrm{D}=150 \mathrm{~mm}=0.15 \mathrm{~m}$ copper pan $\mathrm{T}_{\mathrm{w}}=115^{\circ} \mathrm{C}$, $\mathrm{T}_{\text {sat }}=100^{\circ} \mathrm{C}$ at 1 atm
Requirements: 1-Power required to boil the water, 2- evaporating rate, 3- ratio of surface heat flux to the critical heat flux. 4- the temperature required to achieve the critical heat flux.

- Properties: the properties of water at $100^{\circ} \mathrm{C}$, $\rho_{\mathrm{f}}=957.9 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{\mathrm{v}}=0.5978 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~h}_{\mathrm{fg}}=2257 \mathrm{~kJ} / \mathrm{kg}$, $\mathrm{cp}_{\mathrm{f}}=4217 \mathrm{~J} / \mathrm{kg} . \mathrm{K}, \mathrm{k}_{\mathrm{f}}=0.679 \mathrm{~W} / \mathrm{m} . \mathrm{K}, \mu_{\mathrm{f}}=0.282 \times 10^{-}$ ${ }^{3} \mathrm{~kg} / \mathrm{m} . \mathrm{sec}, \operatorname{Pr}=1.75, \mathrm{C}_{\mathrm{sf}}=0.0128, \mathrm{n}=1.0$, $\sigma=0.0589 \mathrm{~N} / \mathrm{m}$.
- Analysis: The heat flux for boiling is
- $\dot{q}_{\text {nucleate }}=\mu_{f} h_{f g}\left[\frac{g\left(\rho_{f}-\rho_{v}\right)}{\sigma}\right]^{1 / 2}\left[\frac{c p_{f}\left(T_{w}-T_{s a t}\right)}{C_{s f} h_{f g} P r_{f}^{n}}\right]^{3}$
- $\dot{q}_{\text {nucleate }}=0.282 \times 10^{-3} \times 2257$
$\times 10^{3}\left[\frac{9.81(957.9-0.5978)}{0.0587}\right]^{1 / 2}\left[\frac{4217(115-100)}{0.0128 \times 2257 \times 10^{3} 1.75^{1.0}}\right]^{3}$
$=498616 \mathrm{~W} / \mathrm{m}^{2}$
- The heat of nucleation
- $\dot{Q}=\frac{\pi}{4} D^{2} \dot{q}_{\text {nucleate }}=\frac{\pi}{4}(0.15)^{2} \times 498616$ $=8811.28 \mathrm{~W}$
- Mass of water evaporation
- $\dot{m}_{s}=\frac{\dot{Q}}{h_{f g}}=\frac{8811.28}{2257 \times 10^{3}} \times 3600=14.0 \mathrm{~kg} / \mathrm{hr}$
- The maximum heat flux:
- $\dot{q}_{\text {max }}=C h_{f g} \rho_{v}\left[\frac{\sigma g\left(\rho_{f}-\rho_{v}\right)}{\rho_{v}^{2}}\right]^{1 / 4}$
- $\dot{q}_{\text {max }}=0.149 \times 2257 \times 10^{3}$
$\times 0.5978\left[\frac{0.0589 \times 9.81(957.9-0.5978)}{(0.5978)^{2}}\right]^{1 / 4}=1260.968 \mathrm{~kW} . \mathrm{m}^{2}$
- $\frac{\dot{q}_{\text {nucleate }}}{\dot{q}_{\text {max }}}=\frac{498616}{1260968.1}=0.395$
- For maximum heat flux $\dot{q}_{\text {max }}$

$$
=\mu_{f} h_{f g}\left[\frac{g\left(\rho_{f}-\rho_{v}\right)}{\sigma}\right]^{1 / 2}\left[\frac{c p_{f}\left(T_{w}-T_{s a t}\right)}{C_{s f} h_{f g} P r_{f}^{n}}\right]^{3}
$$

- $\dot{q}_{\text {nucleate }}=0.282 \times 10^{-3} \times 2257$
$\times 10^{3}\left[\frac{9.81(957.9-0.5978)}{0.0587}\right]^{1 / 2}\left[\frac{4217\left(T_{w}-T_{\text {sat }}\right)}{0.0128 \times 2257 \times 10^{3} 1.75^{1.0}}\right]^{3}$
$=1260968.1$
- $\Delta T_{e}=20.43^{\circ} \mathrm{C}$

