

Boiling

Prof. Dr. Majid

Boiling

 pool boiling is the boiling of stationary fluids. In pool boiling, the fluid is not forced to flow by a mover such as a pump, and any motion of the fluid is due to natural convection currents and the motion of the bubbles under the influence of buoyancy. As a familiar example of pool boiling, consider the boiling of tap water in a pan on top of a stove. The water is initially at about 15°C, far below the saturation temperature of 100°C at standard atmospheric pressure

Boiling Regimes and the Boiling Curve

-A natural convection until boiling

- A-C nucleate boiling
- Transition Boiling (between Points C and D) Film Boiling (beyond Point D)

Heat Transfer Correlations in Pool Boiling

For Nucleate Boiling Nucleate boiling regime is between $(5^{\circ}C) \leq \Delta T_{excess} \leq 30^{\circ}C$

$$\dot{q}_{nucleate} = \mu_f h_{fg} \left[\frac{g(\rho_f - \rho_v)}{\sigma} \right]^{1/2} \left[\frac{Cp_f(T_w - T_{sat})}{C_{sf} h_{fg} P r_f^n} \right]^3$$

Where $\dot{q}_{nucleate} = nucleate$ boiling heat $f lux W/m^2$ $\mu_f = viscosity$ of liquid kg/m.sec, $h_{fg} =$ enthalpy of evaporation J/kg $\rho_f, \rho_v = density$ of liquid and vapor respectively in kg/m³ σ = surface tension of liquid-vapor interface N/m $cp_f =$ specific heat of liquid J/kg.^o C, $T_w =$ surface temperature of heater .^o C T_{sat} =saturation temperature of fluid .^o C, $Pr_f =$ Prandtl Number of liquid $C_{sf} =$ experimental constant that depends on surface-fluid compensation n= experimental constant that depends on the fluid, n=1 for water and 1.7 for other liquids.

Peak Heat Flux

 The maximum (or critical) heat flux in nucleate pool boiling was determined theoretically by S. S. Kutateladze in Russia in 1948 and N. Zuber in the United States in 1958 using quite different approaches, and is expressed as

•
$$\dot{q}_{max} = C_{cr} h_{fg} \rho_{v} \left[\frac{\sigma g(\rho_{f} - \rho_{v})}{\rho_{v}^{2}} \right]^{1/4}$$
 (2)

- Where $C_{cr} = constant$ whose value depend on heater geometry
- $C_{cr} = 0.131$ for large horizontal cylinders and sphere
- $C_{cr} = 0.149$ for large horizontal plate

Minimum Heat Flux

• Zuber [10] used stability theory to derive the following expression for the minimum heat flux .

•
$$\dot{q}_{min} = 0.09 \rho_{\nu} h_{fg} \left[\frac{\sigma g(\rho_f - \rho_{\nu})}{(\rho_f + \rho_{\nu})^2} \right]^{1/4}$$
 (3)

Film Boiling TheNusult number for film boiling on a horizontal cylinder or sphere of diameter D is given by

$$\overline{Nu}_D = \frac{\overline{h}D}{k_v} = C \left[\frac{g\rho_v(\rho_f - \rho_v)h'_{fg}}{\mu_f} \right]^{1/4}$$
(4)

Where k_v is the thermal conductivity of the vapor in W/m.K and

$$C = \begin{cases} 0.62 \text{ for horizontal cylinder} \\ 0.67 \text{ for spheres} \end{cases}$$

In film boiling the heat transfer by radiation

Is be considered

$$q_{film} = \overline{h}(T_w - T_{sat})$$
(5)

$$\dot{q}_{rad} = \varepsilon \sigma (T_w^4 - T_{sat}^4)$$
(6)
Where ε is emissivity of the heating surface
And $\sigma = 5.67 \times 10^{-8} W/m^2 K^4$
And temperature here in K not .^o C

$$\dot{q}_{tot} = \dot{q}_{film} + \frac{3}{4}\dot{q}_{rad} \tag{7}$$

Surface tension of liquid-vapor		r Fluid–Heating Surface Combination		C_{sf}	n	
interface for water		Water-copper (polished)		0.0130	1.0	
T, ℃	σ, N/m*	Water-copper (scored)		0.0068	1.0	
0	0.0757	Water-stainless steel (mech	anically polished)	0.0130	1.0	
20	0.0737	Water-stainless steel (groun	d and polished)	0.0060	1.0	
20	0.0727	Water-stainless steel (teflon	pitted)	0.0058	1.0	
40	0.0690	Water-stainless steel (chem	ically etched)	0.0130	1.0	
80	0.0602	Water-brass		0.0060	1.0	
100	0.0627	Water-nickel		0.0060	1.0	
100	0.0589	Water-platinum		0.0130	1.0	
120	0.0550	n-Pentane-copper (polished)	0.0154	1.7	
140	0.0509	n-Pentane-chromium	0.0150	1.7		
160	0.0466	Benzene-chromium		0.1010	1.7	
200	0.0422	Ethyl alcohol–chromium Carbon tetrachloride–copper		0.0027	1.7	
200	0.0377			0.0130	1.7	
220	0.0331	Isopropanol-copper		0.0025	1.7	
240	0.0284					
260	Values of the coefficient C_{cr} for use in Eq. 10–3 for maximum heat flux (dimensionless parameter $L^* = L[g(\rho_l - \rho_v)/\sigma]^{1/2}$					
300	0.0144	Heater Geometry	C _{cr}	Charac.	Dimension of Heater, L	Range of L*
320	0.0099	Large horizontal flat heater	0.149	Wie	dth or diameter	L* > 27
340	0.0056	Small horizontal flat heater ¹	18.9K	Wie	dth or diameter	$9 < L^* < 20$
360	0.0019	Large horizontal cylinder	0.12	Rad	dius	$L^* > 1.2$
374	0.0	Small horizontal cylinder	0.12L*-0.25	Rad	dius	$0.15 < L^* < 1.2$
		Large sphere	0.11	Rad	dius	L* > 4.26
		Small sphere	0.227L*-0.5	Rad	dius	0.15 < L* < 4.26

Values of the coefficient C_{st} and n for various fluid-surface combinations

 $K_1 = \sigma/[g(\rho_l - \rho_v)A_{\text{heater}}]$

Surface tension of some fluids (from Suryanarayana, 1995, originally based on data from Jasper, 1972)

Substance and Temp. Range	Surface Tension, σ , N/m* (T in °C)
Ammonia, -75 to -40°C: Benzene, 10 to 80°C: Butane, -70 to -20°C: Carbon dioxide, -30 to -20°C: Ethyl alcohol, 10 to 70°C: Mercury, 5 to 200°C: Methyl alcohol, 10 to 60°C: Pentane, 10 to 30°C: Propane, -90 to -10°C:	0.0264 + 0.000223T 0.0315 - 0.000129T 0.0149 - 0.000121T 0.0043 - 0.000160T 0.0241 - 0.000083T 0.4906 - 0.000205T 0.0240 - 0.000077T 0.0183 - 0.000110T 0.0092 - 0.000087T

Example.1 The bottom of a copper pan, 150 mm in diameter, is maintained at 115°C by the heating element of an electric range. Estimate the power required to boil the water in this pan. Determine the evaporation rate. What is the ratio of the surface heat flux to the critical heat flux? What pan temperature is required to achieve the critical heat flux?

<u>Solution</u>: D=150mm=0.15m copper pan T_w =115°C, T_{sat} =100°C at 1atm

<u>Requirements:</u> 1-Power required to boil the water, 2- evaporating rate, 3- ratio of surface heat flux to the critical heat flux. 4- the temperature required to achieve the critical heat flux.

- <u>Properties:</u> the properties of water at 100°C, ρ_f =957.9kg/m³, ρ_v =0.5978kg/m³, h_{fg} =2257kJ/kg, cp_f =4217J/kg.K, k_f =0.679W/m.K, μ_f =0.282x10⁻ ³kg/m.sec, Pr=1.75, C_{sf}=0.0128, n=1.0, σ =0.0589N/m.
- Analysis: The heat flux for boiling is

•
$$\dot{q}_{nucleate} = \mu_f h_{fg} \left[\frac{g(\rho_f - \rho_v)}{\sigma} \right]^{1/2} \left[\frac{cp_f(T_w - T_{sat})}{C_{sf}h_{fg}Pr_f^n} \right]^3$$

• $\dot{q}_{nucleate} = 0.282 \times 10^{-3} \times 2257$
 $\times 10^3 \left[\frac{9.81(957.9 - 0.5978)}{0.0587} \right]^{1/2} \left[\frac{4217(115 - 100)}{0.0128 \times 2257 \times 10^3 1.75^{1.0}} \right]^3$
= 498616W/m²

- The heat of nucleation
- $\dot{Q} = \frac{\pi}{4} D^2 \dot{q}_{nucleate} = \frac{\pi}{4} (0.15)^2 \times 498616$ = 8811.28W
- Mass of water evaporation

•
$$\dot{m}_s = \frac{\dot{Q}}{h_{fg}} = \frac{8811.28}{2257 \times 10^3} \times 3600 = 14.0 kg/hr$$

• The maximum heat flux:

•
$$\dot{q}_{max} = Ch_{fg}\rho_v \left[\frac{\sigma g(\rho_f - \rho_v)}{\rho_v^2}\right]^{1/4}$$

• $\dot{q}_{max} = 0.149 \times 2257 \times 10^3$
 $\times 0.5978 \left[\frac{0.0589 \times 9.81(957.9 - 0.5978)}{(0.5978)^2}\right]^{1/4} = 1260.968kW$
/m²

•
$$\frac{\dot{q}_{nucleate}}{\dot{q}_{max}} = \frac{498616}{1260968.1} = 0.395$$

• For maximum heat flux \dot{q}_{max}

$$= \mu_f h_{fg} \left[\frac{g(\rho_f - \rho_v)}{\sigma} \right]^{1/2} \left[\frac{cp_f(T_w - T_{sat})}{C_{sf} h_{fg} P r_f^n} \right]^3$$

- $\dot{q}_{nucleate} = 0.282 \times 10^{-3} \times 2257$ $\times 10^3 \left[\frac{9.81(957.9 - 0.5978)}{0.0587} \right]^{1/2} \left[\frac{4217(T_w - T_{sat})}{0.0128 \times 2257 \times 10^3 1.75^{1.0}} \right]^3$ = 1260968.1
- $\Delta T_e = 20.43^{\circ}C$