
In Chap. 1 we analyzed the stresses created in various members and
connections by the loads applied to a structure or machine. We also
learned to design simple members and connections so that they would
not fail under specified loading conditions. Another important aspect of
the analysis and design of structures relates to the deformations caused
by the loads applied to a structure. Clearly, it is important to avoid de-
formations so large that they may prevent the structure from fulfilling
the purpose for which it was intended. But the analysis of deformations
may also help us in the determination of stresses. Indeed, it is not al-
ways possible to determine the forces in the members of a structure by
applying only the principles of statics. This is because statics is based
on the assumption of undeformable, rigid structures. By considering en-
gineering structures as deformable and analyzing the deformations in
their various members, it will be possible for us to compute forces that
are statically indeterminate, i.e., indeterminate within the framework of
statics. Also, as we indicated in Sec. 1.5, the distribution of stresses in
a given member is statically indeterminate, even when the force in that
member is known. To determine the actual distribution of stresses within
a member, it is thus necessary to analyze the deformations that take
place in that member. In this chapter, you will consider the deforma-
tions of a structural member such as a rod, bar, or plate under axial
loading.

First, the normal strain in a member will be defined as the defor-
mation of the member per unit length. Plotting the stress versus the strain

as the load applied to the member is increased will yield a stress-strain
diagram for the material used. From such a diagram we can determine some
important properties of the material, such as its modulus of elasticity, and
whether the material is ductile or brittle (Secs. 2.2 to 2.5). You will also
see in Sec. 2.5 that, while the behavior of most materials is independent of
the direction in which the load is applied, the response of fiber-reinforced
composite materials depends upon the direction of the load. 

From the stress-strain diagram, we can also determine whether the

in which case the material is said to behave elastically a per-
manent set or plastic deformation will result (Sec. 2.6).

Section 2.7 is devoted to the phenomenon of fatigue, which causes
structural or machine components to fail after a very large number of re-
peated loadings, even though the stresses remain in the elastic range. 

The first part of the chapter ends with Sec. 2.8, which is devoted to
the determination of the deformation of various types of members under
various conditions of axial loading.

In Secs. 2.9 and 2.10, statically indeterminate problems will be con-
sidered, i.e., problems in which the reactions and the internal forces can-
not be determined from statics alone. The equilibrium equations derived
from the free-body diagram of the member under consideration must be
complemented by relations involving deformations; these relations will be
obtained from the geometry of the problem.

In Secs. 2.11 to 2.15, additional constants associated with isotropic
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lateral and axial strain, the bulk modulus, which characterizes the change
in volume of a material under hydrostatic pressure, and the modulus of
rigidity, which relates the components of the shearing stress and shearing
strain. Stress-strain relationships for an isotropic material under a multi-
axial loading will also be derived.

In Sec. 2.16, stress-strain relationships involving several distinct val-

ity, will be developed for fiber-reinforced composite materials under a 
multiaxial loading. While these materials are not isotropic, they usually dis-
play special properties, known as orthotropic properties, which facilitate
their study.

In the text material described so far, stresses are assumed uniformly
distributed in any given cross section; they are also assumed to remain
within the elastic range. The validity of the first assumption is discussed in
Sec. 2.17, while stress concentrations near circular holes and fillets in flat
bars are considered in Sec. 2.18. Sections 2.19 and 2.20 are devoted to the
discussion of stresses and deformations in members made of a ductile ma-
terial when the yield point of the material is exceeded. As you will see, per-
manent plastic deformations and residual stresses result from such loading
conditions.

Let us consider a rod BC, of length L and uniform cross-sectional area
A, which is suspended from B (Fig. 2.1a). If we apply a load P to end
C, the rod elongates (Fig. 2.1b). Plotting the magnitude P of the load
against the deformation (Greek letter delta), we obtain a certain load-
deformation diagram (Fig. 2.2). While this diagram contains informa-
tion useful to the analysis of the rod under consideration, it cannot be
used directly to predict the deformation of a rod of the same material
but of different dimensions. Indeed, we observe that, if a deformation

is produced in rod BC by a load P, a load 2P is required to cause the
same deformation in a rod of the same length L, but of cross-
sectional area 2A (Fig. 2.3). We note that, in both cases, the value of
the stress is the same: On the other hand, a load P appliedP A.
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to a rod of the same cross-sectional area A, but of length 2L,
causes a deformation in that rod (Fig. 2.4), i.e., a deformation twice
as large as the deformation it produces in rod BC. But in both cases
the ratio of the deformation over the length of the rod is the same; it is
equal to This observation brings us to introduce the concept of
strain: We define the normal strain in a rod under axial loading as the
deformation per unit length of that rod. Denoting the normal strain by

(Greek letter epsilon), we write

(2.1)

Plotting the stress against the strain we obtain
a curve that is characteristic of the properties of the material and does
not depend upon the dimensions of the particular specimen used. This
curve is called a stress-strain diagram and will be discussed in detail
in Sec. 2.3.

Since the rod BC considered in the preceding discussion had a uni-
form cross section of area A, the normal stress could be assumed to
have a constant value P/A throughout the rod. Thus, it was appropriate
to define the strain as the ratio of the total deformation over the to-
tal length L of the rod. In the case of a member of variable cross-
sectional area A, however, the normal stress varies along the
member, and it is necessary to define the strain at a given point Q by
considering a small element of undeformed length (Fig. 2.5). De-
noting by the deformation of the element under the given loading,
we define the normal strain at point Q as

(2.2)
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Since deformation and length are expressed in the same units, the
normal strain obtained by dividing by L (or by dx) is a dimen-
sionless quantity. Thus, the same numerical value is obtained for the
normal strain in a given member, whether SI metric units or U.S. 
customary units are used. Consider, for instance, a bar of length

m and uniform cross section, which undergoes a deforma-
tion The corresponding strain is

Note that the deformation could have been expressed in micrometers:
We would then have written

the length and deformation of the same bar are, respectively,
and The corresponding strain is

which is the same value that we found using SI units. It is customary,
however, when lengths and deformations are expressed in inches or micro-
inches to keep the original units in the expression obtained
for the strain. Thus, in our example, the strain would be recorded as

or, alternatively, as 

We saw in Sec. 2.2 that the diagram representing the relation between
stress and strain in a given material is an important characteristic of the
material. To obtain the stress-strain diagram of a material, one usually
conducts a tensile test on a specimen of the material. One type of spec-
imen commonly used is shown in Fig. 2.6. The cross-sectional area of
the cylindrical central portion of the specimen has been accurately de-
termined and two gage marks have been inscribed on that portion at a
distance from each other. The distance is known as the gage length
of the specimen.

150 m.

Typical tensile-test specimen.



The test specimen is then placed in a testing machine (Fig. 2.7),
which is used to apply a centric load P. As the load P increases, the
distance L between the two gage marks also increases (Fig. 2.8). The
distance L is measured with a dial gage, and the elongation 
is recorded for each value of P. A second dial gage is often used si-
multaneously to measure and record the change in diameter of the spec-
imen. From each pair of readings P and the stress is computed by
dividing P by the original cross-sectional area of the specimen, and
the strain by dividing the elongation by the original distance be-
tween the two gage marks. The stress-strain diagram may then be ob-
tained by plotting as an abscissa and as an ordinate.

Stress-strain diagrams of various materials vary widely, and differ-
ent tensile tests conducted on the same material may yield different re-
sults, depending upon the temperature of the specimen and the speed
of loading. It is possible, however, to distinguish some common char-
acteristics among the stress-strain diagrams of various groups of mate-
rials and to divide materials into two broad categories on the basis 
of these characteristics, namely, the ductile materials and the brittle
materials.

Ductile materials, which comprise structural steel, as well as many
alloys of other metals, are characterized by their ability to yield at nor-
mal temperatures. As the specimen is subjected to an increasing load,
its length first increases linearly with the load and at a very slow rate.
Thus, the initial portion of the stress-strain diagram is a straight line

Test specimen with tensile load.

This machine is used to test tensile test specimens, such as those
shown in this chapter.



with a steep slope (Fig. 2.9). However, after a critical value of the
stress has been reached, the specimen undergoes a large deformation
with a relatively small increase in the applied load. This deformation is
caused by slippage of the material along oblique surfaces and is due,
therefore, primarily to shearing stresses. As we can note from the stress-
strain diagrams of two typical ductile materials (Fig. 2.9), the elonga-
tion of the specimen after it has started to yield can be 200 times as
large as its deformation before yield. After a certain maximum value of
the load has been reached, the diameter of a portion of the specimen
begins to decrease, because of local instability (Fig. 2.10a). This phe-
nomenon is known as necking. After necking has begun, somewhat
lower loads are sufficient to keep the specimen elongating further, un-
til it finally ruptures (Fig. 2.10b). We note that rupture occurs along a
cone-shaped surface that forms an angle of approximately with the
original surface of the specimen. This indicates that shear is primarily
responsible for the failure of ductile materials, and confirms the fact
that, under an axial load, shearing stresses are largest on surfaces form-
ing an angle of with the load (cf. Sec. 1.11). The stress at which
yield is initiated is called the yield strength of the material, the stress

corresponding to the maximum load applied to the specimen is
known as the ultimate strength, and the stress corresponding to rup-
ture is called the breaking strength.

Brittle materials, which comprise cast iron, glass, and stone, are
characterized by the fact that rupture occurs without any noticeable prior
change in the rate of elongation (Fig. 2.11). Thus, for brittle materials,
there is no difference between the ultimate strength and the breaking
strength. Also, the strain at the time of rupture is much smaller for brit-
tle than for ductile materials. From Fig. 2.12, we note the absence of
any necking of the specimen in the case of a brittle material, and ob-
serve that rupture occurs along a surface perpendicular to the load. We
conclude from this observation that normal stresses are primarily re-

Stress-strain diagrams of two 
typical ductile materials.

Tested specimen of a ductile material.

Stress-strain diagram for a typical 
brittle material. peratures. However, a material that is ductile at normal temperatures may display the char-

acteristics of a brittle material at very low temperatures, while a normally brittle material may
behave in a ductile fashion at very high temperatures. At temperatures other than normal,
therefore, one should refer to a material in a ductile state or to a material in a brittle state,
rather than to a ductile or brittle material.



The stress-strain diagrams of Fig. 2.9 show that structural steel and
aluminum, while both ductile, have different yield characteristics. In the
case of structural steel (Fig. 2.9a), the stress remains constant over a
large range of values of the strain after the onset of yield. Later the
stress must be increased to keep elongating the specimen, until the max-
imum value has been reached. This is due to a property of the ma-
terial known as strain-hardening. The yield strength of structural steel
can be determined during the tensile test by watching the load shown
on the display of the testing machine. After increasing steadily, the load
is observed to suddenly drop to a slightly lower value, which is main-
tained for a certain period while the specimen keeps elongating. In a
very carefully conducted test, one may be able to distinguish between
the upper yield point, which corresponds to the load reached just be-
fore yield starts, and the lower yield point, which corresponds to the
load required to maintain yield. Since the upper yield point is transient,
the lower yield point should be used to determine the yield strength of
the material.

In the case of aluminum (Fig. 2.9b) and of many other ductile ma-
terials, the onset of yield is not characterized by a horizontal portion of
the stress-strain curve. Instead, the stress keeps increasing

leading eventually to rupture. For such materials, the yield strength can
be defined by the offset method. The yield strength at 0.2% offset, for ex-
ample, is obtained by drawing through the point of the horizontal axis of
abscissa a line parallel to the initial straight-line
portion of the stress-strain diagram (Fig. 2.13). The stress correspon-
ding to the point Y obtained in this fashion is defined as the yield strength
at 0.2% offset.

0.2% or 0.002 ,

Tested specimen of a brittle material.

Determination of yield strength by 
offset method.



A standard measure of the ductility of a material is its percent elon-
gation, which is defined as

where and denote, respectively, the initial length of the tensile
test specimen and its final length at rupture. The specified minimum
elongation for a 2-in. gage length for commonly used steels with yield
strengths up to 50 ksi is 21%. We note that this means that the average
strain at rupture should be at least 0.21 in./in.

Another measure of ductility which is sometimes used is the per-
cent reduction in area, defined as

where and denote, respectively, the initial cross-sectional area of
the specimen and its minimum cross-sectional area at rupture. For struc-
tural steel, percent reductions in area of 60 to 70 percent are common.

Thus far, we have discussed only tensile tests. If a specimen made
of a ductile material were loaded in compression instead of tension, the
stress-strain curve obtained would be essentially the same through its
initial straight-line portion and through the beginning of the portion cor-
responding to yield and strain-hardening. Particularly noteworthy is the
fact that for a given steel, the yield strength is the same in both tension
and compression. For larger values of the strain, the tension and com-
pression stress-strain curves diverge, and it should be noted that neck-
ing cannot occur in compression. For most brittle materials, one finds
that the ultimate strength in compression is much larger than the ulti-
mate strength in tension. This is due to the presence of flaws, such as
microscopic cracks or cavities, which tend to weaken the material in
tension, while not appreciably affecting its resistance to compressive
failure.

Stress-strain diagram for concrete.



An example of brittle material with different properties in tension
and compression is provided by concrete, whose stress-strain diagram
is shown in Fig. 2.14. On the tension side of the diagram, we first ob-
serve a linear elastic range in which the strain is proportional to the
stress. After the yield point has been reached, the strain increases faster
than the stress until rupture occurs. The behavior of the material in com-
pression is different. First, the linear elastic range is significantly larger.
Second, rupture does not occur as the stress reaches its maximum value.
Instead, the stress decreases in magnitude while the strain keeps in-
creasing until rupture occurs. Note that the modulus of elasticity, which
is represented by the slope of the stress-strain curve in its linear por-
tion, is the same in tension and compression. This is true of most brit-
tle materials.

We recall that the stress plotted in the diagrams of Figs. 2.9 and 2.11
was obtained by dividing the load P by the cross-sectional area of
the specimen measured before any deformation had taken place. Since
the cross-sectional area of the specimen decreases as P increases, the
stress plotted in our diagrams does not represent the actual stress in the
specimen. The difference between the engineering stress that
we have computed and the true stress obtained by dividing
P by the cross-sectional area A of the deformed specimen becomes ap-
parent in ductile materials after yield has started. While the engineer-
ing stress which is directly proportional to the load P, decreases with
P during the necking phase, the true stress which is proportional to
P but also inversely proportional to A, is observed to keep increasing
until rupture of the specimen occurs.

Many scientists also use a definition of strain different from that of
the engineering strain Instead of using the total elongation 
and the original value of the gage length, they use all the successive
values of L that they have recorded. Dividing each increment of the
distance between the gage marks, by the corresponding value of L,
they obtain the elementary strain Adding the successive
values of they define the true strain :

With the summation replaced by an integral, they can also express the
true strain as follows:

(2.3)

The diagram obtained by plotting true stress versus true strain (Fig.
2.15) reflects more accurately the behavior of the material. As we have
already noted, there is no decrease in true stress during the necking
phase. Also, the results obtained from tensile and from compressive
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tests will yield essentially the same plot when true stress and true strain
are used. This is not the case for large values of the strain when the
engineering stress is plotted versus the engineering strain. However,
engineers, whose responsibility is to determine whether a load P will
produce an acceptable stress and an acceptable deformation in a given
member, will want to use a diagram based on the engineering stress

and the engineering strain since these expressions
involve data that are available to them, namely the cross-sectional area

and the length of the member in its undeformed state.

Most engineering structures are designed to undergo relatively small
deformations, involving only the straight-line portion of the correspond-
ing stress-strain diagram. For that initial portion of the diagram (Fig.
2.9), the stress is directly proportional to the strain and we can
write

(2.4)

This relation is known as after the English mathematician
Robert Hooke (1635 E is called the modulus of
elasticity of the material involved, or also after the

dimensionless quantity, the modulus E is expressed in the same units as
the stress namely in pascals or one of its multiples if SI units are used,
and in psi or ksi if U.S. customary units are used.

for a given material is known as the proportional limit of that material.
In the case of ductile materials possessing a well-defined yield point,
as in Fig. 2.9a, the proportional limit almost coincides with the yield
point. For other materials, the proportional limit cannot be defined as
easily, since it is difficult to determine with accuracy the value of the
stress for which the relation between and ceases to be linear. But
from this very difficulty we can conclude for such materials that using

portional limit will not result in any significant error.
Some of the physical properties of structural metals, such as

strength, ductility, and corrosion resistance, can be greatly affected by
alloying, heat treatment, and the manufacturing process used. For ex-
ample, we note from the stress-strain diagrams of pure iron and of three
different grades of steel (Fig. 2.16) that large variations in the yield
strength, ultimate strength, and final strain (ductility) exist among these
four metals. All of them, however, possess the same modulus of elas-

within the linear range, is the same. Therefore, if a high-strength steel
is substituted for a lower-strength steel in a given structure, and if all
dimensions are kept the same, the structure will have an increased load-
carrying capacity, but its stiffness will remain unchanged.

,
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Stress-strain diagrams for
iron and different grades of steel.



For each of the materials considered so far, the relation between
normal stress and normal strain, is independent of the direc-
tion of loading. This is because the mechanical properties of each ma-
terial, including its modulus of elasticity E, are independent of the di-
rection considered. Such materials are said to be isotropic. Materials
whose properties depend upon the direction considered are said to be
anisotropic. An important class of anisotropic materials consists of fiber-
reinforced composite materials.

These composite materials are obtained by embedding fibers of a
strong, stiff material into a weaker, softer material, referred to as a ma-
trix. Typical materials used as fibers are graphite, glass, and polymers,
while various types of resins are used as a matrix. Figure 2.17 shows a
layer, or lamina, of a composite material consisting of a large number
of parallel fibers embedded in a matrix. An axial load applied to the
lamina along the x axis, that is, in a direction parallel to the fibers, will
create a normal stress in the lamina and a corresponding normal

long as the elastic limit of the lamina is not exceeded. Similarly, an ax-
ial load applied along the y axis, that is, in a direction perpendicular to
the lamina, will create a normal stress and a normal strain satis-

z axis will cre-

law. However, the moduli of elasticity and corresponding, re-
spectively, to each of the above loadings will be different. Because the
fibers are parallel to the x axis, the lamina will offer a much stronger
resistance to a loading directed along the x axis than to a loading di-
rected along the y or z axis, and will be much larger than either 
or

A flat laminate is obtained by superposing a number of layers or
laminas. If the laminate is to be subjected only to an axial load caus-
ing tension, the fibers in all layers should have the same orientation as
the load in order to obtain the greatest possible strength. But if the lam-
inate may be in compression, the matrix material may not be sufficiently
strong to prevent the fibers from kinking or buckling. The lateral sta-
bility of the laminate may then be increased by positioning some of the
layers so that their fibers will be perpendicular to the load. Positioning
some layers so that their fibers are oriented at or to the
load may also be used to increase the resistance of the laminate to in-
plane shear. Fiber-reinforced composite materials will be further dis-
cussed in Sec. 2.16, where their behavior under multiaxial loadings will
be considered.

If the strains caused in a test specimen by the application of a given
load disappear when the load is removed, the material is said to behave
elastically. The largest value of the stress for which the material be-
haves elastically is called the elastic limit of the material.

If the material has a well-defined yield point as in Fig. 2.9a, the
elastic limit, the proportional limit (Sec. 2.5), and the yield point are
essentially equal. In other words, the material behaves elastically and
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linearly as long as the stress is kept below the yield point. If the yield
point is reached, however, yield takes place as described in Sec. 2.3
and, when the load is removed, the stress and strain decrease in a lin-
ear fashion, along a line CD parallel to the straight-line portion AB of
the loading curve (Fig. 2.18). The fact that does not return to zero af-
ter the load has been removed indicates that a permanent set or plastic
deformation of the material has taken place. For most materials, the
plastic deformation depends not only upon the maximum value reached
by the stress, but also upon the time elapsed before the load is removed.
The stress-dependent part of the plastic deformation is referred to
as slip, and the time-dependent part

creep.
When a material does not possess a well-defined yield point, the elas-

tic limit cannot be determined with precision. However, assuming the
elastic limit equal to the yield strength as defined by the offset method (Sec.
2.3) results in only a small error. Indeed, referring to Fig. 2.13, we note
that the straight line used to determine point Y also represents the unload-
ing curve after a maximum stress has been reached. While the material
does not behave truly elastically, the resulting plastic strain is as small as
the selected offset.

If, after being loaded and unloaded (Fig. 2.19), the test specimen is
loaded again, the new loading curve will closely follow the earlier unloading
curve until it almost reaches point C; it will then bend to the right and con-
nect with the curved portion of the original stress-strain diagram. We note
that the straight-line portion of the new loading curve is longer than the
corresponding portion of the initial one. Thus, the proportional limit and
the elastic limit have increased as a result of the strain-hardening that oc-
curred during the earlier loading of the specimen. However, since the point
of rupture R remains unchanged, the ductility of the specimen, which should
now be measured from point D, has decreased.

We have assumed in our discussion that the specimen was loaded twice
in the same direction, i.e., that both loads were tensile loads. Let us now
consider the case when the second load is applied in a direction opposite
to that of the first one.

We assume that the material is mild steel, for which the yield strength
is the same in tension and in compression. The initial load is tensile and
is applied until point C has been reached on the stress-strain diagram (Fig.
2.20). After unloading (point D), a compressive load is applied, causing
the material to reach point H, where the stress is equal to We note
that portion DH of the stress-strain diagram is curved and does not show
any clearly defined yield point. This is referred to as the Bauschinger
effect. As the compressive load is maintained, the material yields along
line HJ.

If the load is removed after point J has been reached, the stress returns
to zero along line JK, and we note that the slope of JK is equal to the mod-
ulus of elasticity E. The resulting permanent set AK may be positive, neg-
ative, or zero, depending upon the lengths of the segments BC and HJ. If
a tensile load is applied again to the test specimen, the portion of the stress-
strain diagram beginning at K (dashed line) will curve up and to the right
until the yield stress has been reached.Y
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If the initial loading is large enough to cause strain-hardening of
the material (point ), unloading takes place along line As the
reverse load is applied, the stress becomes compressive, reaching its
maximum value at and maintaining it as the material yields along
line We note that while the maximum value of the compressive
stress is less than the total change in stress between and is
still equal to 

If point K or coincides with the origin A of the diagram, the per-
manent set is equal to zero, and the specimen may appear to have re-
turned to its original condition. However, internal changes will have
taken place and, while the same loading sequence may be repeated, the
specimen will rupture without any warning after relatively few repeti-
tions. This indicates that the excessive plastic deformations to which
the specimen was subjected have caused a radical change in the char-
acteristics of the material. Reverse loadings into the plastic range, there-
fore, are seldom allowed, and only under carefully controlled condi-
tions. Such situations occur in the straightening of damaged material
and in the final alignment of a structure or machine.

In the preceding sections we have considered the behavior of a test spec-
imen subjected to an axial loading. We recall that, if the maximum stress
in the specimen does not exceed the elastic limit of the material, the
specimen returns to its initial condition when the load is removed. You
might conclude that a given loading may be repeated many times, pro-
vided that the stresses remain in the elastic range. Such a conclusion is
correct for loadings repeated a few dozen or even a few hundred times.
However, as you will see, it is not correct when loadings are repeated
thousands or millions of times. In such cases, rupture will occur at a
stress much lower than the static breaking strength; this phenomenon
is known as fatigue. A fatigue failure is of a brittle nature, even for ma-
terials that are normally ductile.
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Fatigue must be considered in the design of all structural and ma-
chine components that are subjected to repeated or to fluctuating loads.
The number of loading cycles that may be expected during the useful
life of a component varies greatly. For example, a beam supporting an
industrial crane may be loaded as many as two million times in 25 years
(about 300 loadings per working day), an automobile crankshaft will
be loaded about half a billion times if the automobile is driven 200,000
miles, and an individual turbine blade may be loaded several hundred
billion times during its lifetime.

Some loadings are of a fluctuating nature. For example, the pas-
sage of traffic over a bridge will cause stress levels that will fluctuate
about the stress level due to the weight of the bridge. A more severe
condition occurs when a complete reversal of the load occurs during
the loading cycle. The stresses in the axle of a railroad car, for exam-
ple, are completely reversed after each half-revolution of the wheel.

The number of loading cycles required to cause the failure of a
specimen through repeated successive loadings and reverse loadings
may be determined experimentally for any given maximum stress level.
If a series of tests is conducted, using different maximum stress levels,
the resulting data may be plotted as a curve. For each test, the max-
imum stress is plotted as an ordinate and the number of cycles n as
an abscissa; because of the large number of cycles required for rupture,
the cycles n are plotted on a logarithmic scale.

A typical curve for steel is shown in Fig. 2.21. We note that,
if the applied maximum stress is high, relatively few cycles are required
to cause rupture. As the magnitude of the maximum stress is reduced,
the number of cycles required to cause rupture increases, until a stress,
known as the endurance limit, is reached. The endurance limit is the
stress for which failure does not occur, even for an indefinitely large
number of loading cycles. For a low-carbon steel, such as structural
steel, the endurance limit is about one-half of the ultimate strength of
the steel.

For nonferrous metals, such as aluminum and copper, a typical 
curve (Fig. 2.21) shows that the stress at failure continues to decrease
as the number of loading cycles is increased. For such metals, one de-
fines the fatigue limit as the stress corresponding to failure after a spec-
ified number of loading cycles, such as 500 million.

Examination of test specimens, of shafts, of springs, and of other
components that have failed in fatigue shows that the failure was initi-
ated at a microscopic crack or at some similar imperfection. At each
loading, the crack was very slightly enlarged. During successive load-
ing cycles, the crack propagated through the material until the amount
of undamaged material was insufficient to carry the maximum load, and
an abrupt, brittle failure occurred. Because fatigue failure may be ini-
tiated at any crack or imperfection, the surface condition of a specimen
has an important effect on the value of the endurance limit obtained in
testing. The endurance limit for machined and polished specimens is
higher than for rolled or forged components, or for components that are
corroded. In applications in or near seawater, or in other applications
where corrosion is expected, a reduction of up to 50% in the endurance
limit can be expected.
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Consider a homogeneous rod BC of length L and uniform cross section
of area A subjected to a centric axial load P (Fig. 2.22). If the result-
ing axial stress does not exceed the proportional limit of the

(2.4)

from which it follows that

(2.5)

Recalling that the strain was defined in Sec. 2.2 as we have

(2.6)

and, substituting for from (2.5) into (2.6):

(2.7)

Equation (2.7) may be used only if the rod is homogeneous (con-
stant E), has a uniform cross section of area A, and is loaded at its ends.
If the rod is loaded at other points, or if it consists of several portions
of various cross sections and possibly of different materials, we must
divide it into component parts that satisfy individually the required
conditions for the application of formula (2.7). Denoting, respectively,
by and the internal force, length, cross-sectional area, and
modulus of elasticity corresponding to part i, we express the deforma-
tion of the entire rod as

(2.8)

We recall from Sec. 2.2 that, in the case of a rod of variable cross
section (Fig. 2.5), the strain depends upon the position of the point Q
where it is computed and is defined as Solving for and
substituting for from Eq. (2.5), we express the deformation of an el-
ement of length dx as

The total deformation of the rod is obtained by integrating this ex-
pression over the length L of the rod:

(2.9)

Formula (2.9) should be used in place of (2.7), not only when the cross-
sectional area A is a function of x, but also when the internal force P
depends upon x, as is the case for a rod hanging under its own weight.
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The rod BC of Fig. 2.22, which was used to derive formula (2.7),
and the rod AD of Fig. 2.23, which has just been discussed in Exam-
ple 2.01, both had one end attached to a fixed support. In each case,
therefore, the deformation of the rod was equal to the displacement
of its free end. When both ends of a rod move, however, the deforma-
tion of the rod is measured by the relative displacement of one end of
the rod with respect to the other. Consider, for instance, the assembly
shown in Fig. 2.24a, which consists of three elastic bars of length L
connected by a rigid pin at A. If a load P is applied at B (Fig. 2.24b),
each of the three bars will deform. Since the bars AC and are at-
tached to fixed supports at C and their common deformation is mea-
sured by the displacement of point A. On the other hand, since both
ends of bar AB move, the deformation of AB is measured by the dif-
ference between the displacements and of points A and B, i.e., by
the relative displacement of B with respect to A. Denoting this relative
displacement by we write

(2.10)

where A is the cross-sectional area of AB and E is its modulus of 
elasticity.
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Determine the deformation of the steel rod shown in Fig. 2.23a
under the given loads E 29 106 psi .

We divide the rod into three component parts shown in
Fig. 2.23b and write

To find the internal forces and we must pass sec-
tions through each of the component parts, drawing each time
the free-body diagram of the portion of rod located to the right
of the section (Fig. 2.23c). Expressing that each of the free
bodies is in equilibrium, we obtain successively

Carrying the values obtained into Eq. (2.8), we have
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