
In the two preceding chapters you studied how to calculate the stresses
and strains in structural members subjected to axial loads, that is, to
forces directed along the axis of the member. In this chapter struc-
tural members and machine parts that are in torsion will be consid-
ered. More specifically, you will analyze the stresses and strains in
members of circular cross section subjected to twisting couples, or
torques, T and (Fig. 3.1). These couples have a common magni-
tude T, and opposite senses. They are vector quantities and can be
represented either by curved arrows as in Fig. 3.1a, or by couple vec-
tors as in Fig. 3.1b.
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Members in torsion are encountered in many engineering applica-
tions. The most common application is provided by transmission shafts,
which are used to transmit power from one point to another. For ex-
ample, the shaft shown in Fig. 3.2 is used to transmit power from the
engine to the rear wheels of an automobile. These shafts can be either
solid, as shown in Fig. 3.1, or hollow.

In the automotive power train shown, the shaft transmits power from the
engine to the rear wheels.



Consider the system shown in Fig. 3.3a, which consists of a steam
turbine A and an electric generator B connected by a transmission
shaft AB. By breaking the system into its three component parts (Fig.
3.3b), you can see that the turbine exerts a twisting couple or torque
T on the shaft and that the shaft exerts an equal torque on the gen-
erator. The generator reacts by exerting the equal and opposite torque

on the shaft, and the shaft by exerting the torque on the
turbine.

You will first analyze the stresses and deformations that take place
in circular shafts. In Sec. 3.3, an important property of circular shafts
is demonstrated: When a circular shaft is subjected to torsion, every
cross section remains plane and undistorted. In other words, while the
various cross sections along the shaft rotate through different angles,
each cross section rotates as a solid rigid slab. This property will en-
able you to determine the distribution of shearing strains in a circular
shaft and to conclude that the shearing strain varies linearly with the
distance from the axis of the shaft.
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Considering deformations in the elastic range
law for shearing stress and strain, you will determine the distribution
of shearing stresses in a circular shaft and derive the elastic torsion for-
mulas (Sec. 3.4).

In Sec. 3.5, you will learn how to find the angle of twist of a cir-
cular shaft subjected to a given torque, assuming again elastic defor-
mations. The solution of problems involving statically indeterminate
shafts is considered in Sec. 3.6.

In Sec. 3.7, you will study the design of transmission shafts. In or-
der to accomplish the design, you will learn to determine the required
physical characteristics of a shaft in terms of its speed of rotation and
the power to be transmitted.

The torsion formulas cannot be used to determine stresses near sec-
tions where the loading couples are applied or near a section where an
abrupt change in the diameter of the shaft occurs. Moreover, these for-
mulas apply only within the elastic range of the material.

In Sec. 3.8, you will learn how to account for stress concentrations
where an abrupt change in diameter of the shaft occurs. In Secs. 3.9 to
3.11, you will consider stresses and deformations in circular shafts made
of a ductile material when the yield point of the material is exceeded.
You will then learn how to determine the permanent plastic deforma-
tions and residual stresses that remain in a shaft after it has been loaded
beyond the yield point of the material.

In the last sections of this chapter, you will study the torsion of
noncircular members (Sec. 3.12) and analyze the distribution of stresses
in thin-walled hollow noncircular shafts (Sec. 3.13).

Considering a shaft AB subjected at A and B to equal and opposite
torques T and T , we pass a section perpendicular to the axis of the
shaft through some arbitrary point C (Fig. 3.4). The free-body diagram
of the portion BC of the shaft must include the elementary shearing
forces dF, perpendicular to the radius of the shaft, that portion AC ex-
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erts on BC as the shaft is twisted (Fig. 3.5a). But the conditions of equi-
librium for BC require that the system of these elementary forces be
equivalent to an internal torque T, equal and opposite to T (Fig. 3.5b).
Denoting by the perpendicular distance from the force dF to the axis
of the shaft, and expressing that the sum of the moments of the shear-
ing forces dF about the axis of the shaft is equal in magnitude to the
torque T, we write

or, since where is the shearing stress on the element of
area dA,

(3.1)

While the relation obtained expresses an important condition that
must be satisfied by the shearing stresses in any given cross section of
the shaft, it does not tell us how these stresses are distributed in the
cross section. We thus observe, as we already did in Sec. 1.5, that the
actual distribution of stresses under a given load is statically indeter-
minate, i.e., this distribution cannot be determined by the methods of
statics. However, having assumed in Sec. 1.5 that the normal stresses
produced by an axial centric load were uniformly distributed, we found
later (Sec. 2.17) that this assumption was justified, except in the neigh-
borhood of concentrated loads. A similar assumption with respect to the

dA T

dF dA,

dF T

distribution of shearing stresses in an elastic shaft would be wrong. We
must withhold any judgment regarding the distribution of stresses in a
shaft until we have analyzed the deformations that are produced in the
shaft. This will be done in the next section.

One more observation should be made at this point. As was indi-
cated in Sec. 1.12, shear cannot take place in one plane only. Consider
the very small element of shaft shown in Fig. 3.6. We know that the
torque applied to the shaft produces shearing stresses on the faces
perpendicular to the axis of the shaft. But the conditions of equilibrium
discussed in Sec. 1.12 require the existence of equal stresses on the
faces formed by the two planes containing the axis of the shaft. That
such shearing stresses actually occur in torsion can be demonstrated.
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disks as shown in Fig. 3.7a. If markings have been painted on two ad-
joining slats, it is observed that the slats slide with respect to each other

(Fig. 3.7b). While sliding will not actually take place in a shaft made
of a homogeneous and cohesive material, the tendency for sliding will
exist, showing that stresses occur on longitudinal planes as well as on

Consider a circular shaft that is attached to a fixed support at one end
(Fig. 3.8a). If a torque T is applied to the other end, the shaft will twist,
with its free end rotating through an angle called the angle of twist
(Fig. 3.8b). Observation shows that, within a certain range of values of
T, the angle of twist is proportional to T. It also shows that is pro-
portional to the length L of the shaft. In other words, the angle of twist
for a shaft of the same material and same cross section, but twice as
long, will be twice as large under the same torque T. One purpose of
our analysis will be to find the specific relation existing among L,
and T; another purpose will be to determine the distribution of shear-
ing stresses in the shaft, which we were unable to obtain in the pre-
ceding section on the basis of statics alone.

At this point, an important property of circular shafts should be
noted: When a circular shaft is subjected to torsion, every cross section
remains plane and undistorted. In other words, while the various cross
sections along the shaft rotate through different amounts, each cross
section rotates as a solid rigid slab. This is illustrated in Fig. 3.9a, which
shows the deformations in a rubber model subjected to torsion. The
property we are discussing is characteristic of circular shafts, whether
solid or hollow; it is not enjoyed by members of noncircular cross sec-
tion. For example, when a bar of square cross section is subjected
to torsion, its various cross sections warp and do not remain plane
(Fig. 3.9b).
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The cross sections of a circular shaft remain plane and undistorted
because a circular shaft is axisymmetric, i.e., its appearance remains the
same when it is viewed from a fixed position and rotated about its axis
through an arbitrary angle. (Square bars, on the other hand, retain
the same appearance only if they are rotated through or )
As we will see presently, the axisymmetry of circular shafts may be
used to prove theoretically that their cross sections remain plane and
undistorted.

Consider the points C and D located on the circumference of a given
cross section of the shaft, and let and be the positions they will oc-
cupy after the shaft has been twisted (Fig. 3.10a). The axisymmetry of
the shaft and of the loading requires that the rotation which would have
brought D into C should now bring into . Thus and must
lie on the circumference of a circle, and the arc must be equal
to the arc CD (Fig. 3.10b). We will now examine whether the circle on
which and lie is different from the original circle. Let us assume
that and do lie on a different circle and that the new circle is lo-
cated to the left of the original circle, as shown in Fig. 3.10b. The same
situation will prevail for any other cross section, since all the cross sec-
tions of the shaft are subjected to the same internal torque T, and an
observer looking at the shaft from its end A will conclude that the load-
ing causes any given circle drawn on the shaft to move away. But an
observer located at B, to whom the given loading looks the same (a
clockwise couple in the foreground and a counterclockwise couple in
the background) will reach the opposite conclusion, i.e., that the circle
moves toward him. This contradiction proves that our assumption is
wrong and that and lie on the same circle as C and D. Thus, as
the shaft is twisted, the original circle just rotates in its own plane. Since
the same reasoning may be applied to any smaller, concentric circle lo-
cated in the cross section under consideration, we conclude that the en-
tire cross section remains plane (Fig. 3.11).

The above argument does not preclude the possibility for the vari-
ous concentric circles of Fig. 3.11 to rotate by different amounts when
the shaft is twisted. But if that were so, a given diameter of the cross
section would be distorted into a curve which might look as shown in
Fig. 3.12a. An observer looking at this curve from A would conclude
that the outer layers of the shaft get more twisted than the inner ones,
while an observer looking from B would reach the opposite conclusion
(Fig. 3.12b). This inconsistency leads us to conclude that any diame-
ter of a given cross section remains straight (Fig. 3.12c) and, there-
fore, that any given cross section of a circular shaft remains plane and
undistorted.
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Our discussion so far has ignored the mode of application of the
twisting couples T and T . If all sections of the shaft, from one end to
the other, are to remain plane and undistorted, we must make sure that
the couples are applied in such a way that the ends of the shaft them-
selves remain plane and undistorted. This may be accomplished by ap-
plying the couples T and T to rigid plates, which are solidly attached to
the ends of the shaft (Fig. 3.13a). We can then be sure that all sections
will remain plane and undistorted when the loading is applied, and that
the resulting deformations will occur in a uniform fashion throughout
the entire length of the shaft. All of the equally spaced circles shown
in Fig. 3.13a will rotate by the same amount relative to their neighbors,
and each of the straight lines will be transformed into a curve (helix)
intersecting the various circles at the same angle (Fig. 3.13b).

The derivations given in this and the following sections will be
based on the assumption of rigid end plates. Loading conditions en-
countered in practice may differ appreciably from those corresponding
to the model of Fig. 3.13. The chief merit of this model is that it helps
us define a torsion problem for which we can obtain an exact solution,
just as the rigid-end-plates model of Sec. 2.17 made it possible for us
to define an axial-load problem which could be easily and accurately

our idealized model may be extended to most engineering applications.
However, we should keep these results associated in our mind with the
specific model shown in Fig. 3.13.

We will now determine the distribution of shearing strains in a cir-
cular shaft of length L and radius c which has been twisted through an
angle (Fig. 3.14a). Detaching from the shaft a cylinder of radius 
we consider the small square element formed by two adjacent circles
and two adjacent straight lines traced on the surface of the cylinder be-
fore any load is applied (Fig. 3.14b). As the shaft is subjected to a tor-
sional load, the element deforms into a rhombus (Fig. 3.14c). We now
recall from Sec. 2.14 that the shearing strain in a given element is
measured by the change in the angles formed by the sides of that ele-
ment. Since the circles defining two of the sides of the element con-
sidered here remain unchanged, the shearing strain must be equal to
the angle between lines AB and (We recall that should be ex-
pressed in radians.)

We observe from Fig. 3.14c that, for small values of we can ex-
press the arc length as But, on the other hand, we have

It follows that or

(3.2)

where and are both expressed in radians. The equation obtained
shows, as we could have anticipated, that the shearing strain at a given
point of a shaft in torsion is proportional to the angle of twist It also
shows that is proportional to the distance from the axis of the shaft
to the point under consideration. Thus, the shearing strain in a circu-
lar shaft varies linearly with the distance from the axis of the shaft.
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It follows from Eq. (3.2) that the shearing strain is maximum on
the surface of the shaft, where We have

(3.3)

Eliminating from Eqs. (3.2) and (3.3), we can express the shearing
strain at a distance from the axis of the shaft as

(3.4)

No particular stress-strain relationship has been assumed so far in our
discussion of circular shafts in torsion. Let us now consider the case
when the torque T is such that all shearing stresses in the shaft remain
below the yield strength We know from Chap. 2 that, for all practi-
cal purposes, this means that the stresses in the shaft will remain be-
low the proportional limit and below the elastic limit as well. Thus,

we write

(3.5)

where G is the modulus of rigidity or shear modulus of the material.
Multiplying both members of Eq. (3.4) by G, we write

or, making use of Eq. (3.5),

(3.6)

The equation obtained shows that, as long as the yield strength (or pro-
portional limit) is not exceeded in any part of a circular shaft, the shear-
ing stress in the shaft varies linearly with the distance from the axis
of the shaft. Figure 3.15a shows the stress distribution in a solid circu-
lar shaft of radius c, and Fig. 3.15b in a hollow circular shaft of inner
radius and outer radius From Eq. (3.6), we find that, in the latter
case,
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We now recall from Sec. 3.2 that the sum of the moments of the
elementary forces exerted on any cross section of the shaft must be
equal to the magnitude T of the torque exerted on the shaft:

(3.1)

Substituting for from (3.6) into (3.1), we write

But the integral in the last member represents the polar moment of
inertia J of the cross section with respect to its center O. We have
therefore

(3.8)

or, solving for 

(3.9)

Substituting for from (3.9) into (3.6), we express the shearing stress
at any distance from the axis of the shaft as

(3.10)

Equations (3.9) and (3.10) are known as the elastic torsion formulas.
We recall from statics that the polar moment of inertia of a circle of ra-
dius c is In the case of a hollow circular shaft of inner ra-
dius and outer radius the polar moment of inertia is

(3.11)

We note that, if SI metric units are used in Eq. (3.9) or (3.10), T
will be expressed in c or in meters, and J in we check
that the resulting shearing stress will be expressed in that is, pas-
cals (Pa). If U.S. customary units are used, T should be expressed in

c or in inches, and J in with the resulting shearing stress
expressed in psi.
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The torsion formulas (3.9) and (3.10) were derived for a shaft of
uniform circular cross section subjected to torques at its ends. However,
they can also be used for a shaft of variable cross section or for a shaft
subjected to torques at locations other than its ends (Fig. 3.17a). The
distribution of shearing stresses in a given cross section S of the shaft is
obtained from Eq. (3.9), where J denotes the polar moment of inertia of
that section, and where T represents the internal torque in that section.
The value of T is obtained by drawing the free-body diagram of the por-
tion of shaft located on one side of the section (Fig. 3.17b) and writing
that the sum of the torques applied to that portion, including the inter-
nal torque T, is zero (see Sample Prob. 3.1).

Up to this point, our analysis of stresses in a shaft has been lim-
ited to shearing stresses. This is due to the fact that the element we had
selected was oriented in such a way that its faces were either parallel
or perpendicular to the axis of the shaft (Fig. 3.6). We know from ear-
lier discussions (Secs. 1.11 and 1.12) that normal stresses, shearing
stresses, or a combination of both may be found under the same load-
ing condition, depending upon the orientation of the element which has

A hollow cylindrical steel shaft is 1.5 m long and has inner
and outer diameters respectively equal to 40 and 60 mm (Fig.
3.16). (a) What is the largest torque that can be applied to the
shaft if the shearing stress is not to exceed 120 MPa? (b) What
is the corresponding minimum value of the shearing stress in
the shaft?

(3.12)

Recalling that the polar moment of inertia J of the cross sec-
tion is given by Eq. (3.11), where 
and we write

Substituting for J and into (3.12), and letting 
we have

The minimum value
of the shearing stress occurs on the inner surface of the shaft.
It is obtained from Eq. (3.7), which expresses that and 
are respectively proportional to and 

min

c1
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0.02 m
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c2:c1

maxmin

 4.08 

T
J max

c

1.021 10 6 m4 120 106

 0.03 m,
c c2max

J 1
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1

1
2 0.034 0.024 1.021 10 6 m4

c2
1
2 60 mm 0.03 m,

c1
1
2 40 mm 0.02 m

T
J max

c

The largest torque
T that can be applied to the shaft is the torque for which

Since this value is less than the yield strength
for steel, we can use Eq. (3.9). Solving this equation for T, we
have

max 120 MPa.



been chosen. Consider the two elements a and b located on the surface
of a circular shaft subjected to torsion (Fig. 3.18). Since the faces of
element a are respectively parallel and perpendicular to the axis of the
shaft, the only stresses on the element will be the shearing stresses de-
fined by formula (3.9), namely On the other hand, the
faces of element b, which form arbitrary angles with the axis of the
shaft, will be subjected to a combination of normal and shearing stresses.

Let us consider the particular case of an element c (not shown) at
to the axis of the shaft. In order to determine the stresses on the

faces of this element, we consider the two triangular elements shown in
Fig. 3.19 and draw their free-body diagrams. In the case of the element
of Fig. 3.19a, we know that the stresses exerted on the faces BC and
BD are the shearing stresses The magnitude of the corre-
sponding shearing forces is thus where denotes the area of
the face. Observing that the components along DC of the two shearing
forces are equal and opposite, we conclude that the force F exerted on
DC must be perpendicular to that face. It is a tensile force, and its mag-
nitude is

(3.13)

The corresponding stress is obtained by dividing the force F by the area
A of face DC. Observing that we write

(3.14)

A similar analysis of the element of Fig. 3.19b shows that the stress on
the face BE is We conclude that the stresses exerted on the
faces of an element c at to the axis of the shaft (Fig. 3.20) are nor-
mal stresses equal to . Thus, while the element a in Fig. 3.20 is
in pure shear, the element c in the same figure is subjected to a tensile
stress on two of its faces, and to a compressive stress on the other two.
We also note that all the stresses involved have the same magnitude,
Tc J

As you learned in Sec. 2.3, ductile materials generally fail in shear.
Therefore, when subjected to torsion, a specimen J made of a ductile
material breaks along a plane perpendicular to its longitudinal axis (Fig.
3.21a). On the other hand, brittle materials are weaker in tension than
in shear. Thus, when subjected to torsion, a specimen made of a brittle
material tends to break along surfaces which are perpendicular to the
direction in which tension is maximum, i.e., along surfaces forming a

angle with the longitudinal axis of the specimen (Fig. 3.21b).45
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F 2 maxA0 cos 45 maxA0 2

A0maxA0,
max Tc J.

45

max Tc J.

b of Fig. 3.18, will be dis-
cussed in Chap. 7.
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Shaft BC is hollow with inner and outer diameters of 90 mm and 120 mm, re-
spectively. Shafts AB and CD are solid and of diameter d. For the loading
shown, determine (a) the maximum and minimum shearing stress in shaft BC,
(b) the required diameter d of shafts AB and CD if the allowable shearing stress
in these shafts is 65 MPa.

Equations of Statics. Denoting by the torque in shaft AB, we pass a
section through shaft AB and, for the free body shown, we write

We now pass a section through shaft BC and, for the free body shown, we have

a. Shaft BC. For this hollow shaft we have

Maximum Shearing Stress. On the outer surface, we have

Minimum Shearing Stress. We write that the stresses are proportional
to the distance from the axis of the shaft.

b. Shafts AB and CD We note that in both of these shafts the magni-
tude of the torque is and Denoting by c the ra-
dius of the shafts, we write

d 77.8 mmd 2c 2 38.9 mm

c3 58.8 10 6 m3 c 38.9 10 3 m

Tc

J
 65 MPa

6 kN m c

2
c4

all 65 MPa.T 6 kN m

min 64.7 MPa
min

max

c1

c2

min

86.2 MPa

45 mm

60 mm

max 86.2 MPamax 2

TBC c2

J

20 kN m 0.060 m

13.92 10 6 m4

J
2

c4
2 c4

1 2
0.060 4 0.045 4 13.92 10 6 m4

6 kN m 14 kN m TBC 0 TBC 20 kN mMx 0:

6 kN m TAB 0 TAB 6 kN mMx 0:

TAB



a. Hollow Shaft as Designed. For the hollow shaft we have

Using Eq. (3.9), we write

b. Solid Shaft of Equal Weight. For the shaft as designed and this solid
shaft to have the same weight and length, their cross-sectional areas must be
equal.

Since we write

c. Hollow Shaft of 8-in. Diameter. For equal weight, the cross-sectional
areas again must be equal. We determine the inside diameter of the shaft by
writing

For 

With 

T 636 kip in.max

Tc4

J
12 ksi

T 4 in.

212 in4

all 12 ksi and c4 4 in.,

J
2

4 in. 4 3.317 in. 4 212 in4

c5 3.317 in. and c4 4 in.,

3 in. 2 2 in. 2 4 in. 2 c2
5 c5 3.317 in.

A a A c

T 211 kip in.max

Tc3

J
12 ksi

T 2.24 in.

2
2.24 in. 4

all 12 ksi,

3 in. 2 2 in. 2 c2
3 c3 2.24 in.

A a A b

T 408 kip in.max

Tc2

J
12 ksi

T 3 in.

102.1 in4

J
2

c4
2 c4

1 2
3 in. 4 2 in. 4 102.1 in4

The preliminary design of a large shaft connecting a motor to a generator calls
for the use of a hollow shaft with inner and outer diameters of 4 in. and 6 in.,
respectively. Knowing that the allowable shearing stress is 12 ksi, determine
the maximum torque that can be transmitted (a) by the shaft as designed, (b) by
a solid shaft of the same weight, (c) by a hollow shaft of the same weight and
of 8-in. outer diameter.
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