
In the problems considered in the preceding section, we could always
use free-body diagrams and equilibrium equations to determine the in-
ternal forces produced in the various portions of a member under given
loading conditions. The values obtained for the internal forces were 
then entered into Eq. (2.8) or (2.9) to obtain the deformation of the
member.

There are many problems, however, in which the internal forces
cannot be determined from statics alone. In fact, in most of these prob-

determined by simply drawing a free-body diagram of the member and
writing the corresponding equilibrium equations. The equilibrium equa-
tions must be complemented by relations involving deformations ob-
tained by considering the geometry of the problem. Because statics is
not sufficient to determine either the reactions or the internal forces,
problems of this type are said to be statically indeterminate. The fol-
lowing examples will show how to handle this type of problem.

A rod of length L, cross-sectional area and modulus of elas-
ticity has been placed inside a tube of the same length 
but of cross-sectional area and modulus of elasticity (Fig.
2.25a). What is the deformation of the rod and tube when a
force P is exerted on a rigid end plate as shown?
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L,E1,
A1, Denoting by and respectively, the axial forces in

the rod and in the tube, we draw free-body diagrams of all
three elements (Fig. 2.25b, c, d). Only the last of the diagrams
yields any significant information, namely:

(2.11)

Clearly, one equation is not sufficient to determine the two
unknown internal forces and The problem is statically
indeterminate.

However, the geometry of the problem shows that the
deformations and of the rod and tube must be equal.
Recalling Eq. (2.7), we write

(2.12)

Equating the deformations and we obtain:

(2.13)

Equations (2.11) and (2.13) can be solved simultaneously for
and

Either of Eqs. (2.12) can then be used to determine the com-
mon deformation of the rod and tube.
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We observe that a structure is statically in-
determinate whenever it is held by more supports than are required to
maintain its equilibrium. This results in more unknown reactions than
available equilibrium equations. It is often found convenient to desig-
nate one of the reactions as redundant and to eliminate the correspon-
ding support. Since the stated conditions of the problem cannot be ar-
bitrarily changed, the redundant reaction must be maintained in the
solution. But it will be treated as an unknown load that, together with
the other loads, must produce deformations that are compatible with the
original constraints. The actual solution of the problem is carried out
by considering separately the deformations caused by the given loads
and by the redundant reaction, and by adding superposing
sults obtained.

A bar AB of length L and uniform cross section is attached to
rigid supports at A and B before being loaded. What are the
stresses in portions AC and BC due to the application of a load
P at point C (Fig. 2.26a)?

Drawing the free-body diagram of the bar (Fig. 2.26b),
we obtain the equilibrium equation

(2.14)

Since this equation is not sufficient to determine the two
unknown reactions and the problem is statically
indeterminate.

However, the reactions may be determined if we observe
from the geometry that the total elongation of the bar must
be zero. Denoting by and respectively, the elongations
of the portions AC and BC, we write

or, expressing and in terms of the corresponding internal
forces and 

(2.15)

But we note from the free-body diagrams shown respectively
in parts b and c of Fig. 2.27 that and Car-
rying these values into (2.15), we write

(2.16)

Equations (2.14) and (2.16) can be solved simultaneously for
and we obtain and The

desired stresses in AC and in BC are obtained by
dividing, respectively, and by the cross-
sectional area of the bar:
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The general conditions under which the combined effect of several loads can be obtained
in this way are discussed in Sec. 2.12.



Determine the reactions at A and B for the steel bar and load-
ing shown in Fig. 2.28, assuming a close fit at both supports
before the loads are applied.

Following the same procedure as in Example 2.01, we write

L1 L2 L3 L4 0.150 m

A1 A2 400 10 6 m2 A3 A4 250 10 6 m2

P1 0 P2 P3 600 103 N P4 900 103 N

The deformation is obtained from Eq. (2.8) after the
bar has been divided into four portions, as shown in Fig. 2.30.

L

We consider the reaction at B as redundant and release
the bar from that support. The reaction is now considered
as an unknown load (Fig. 2.29a) and will be determined from
the condition that the deformation of the rod must be equal
to zero. The solution is carried out by considering separately
the deformation caused by the given loads (Fig. 2.29b)
and the deformation due to the redundant reaction 
(Fig. 2.29c).
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Substituting these values into Eq. (2.8), we obtain

(2.17)

Considering now the deformation due to the redundant
reaction we divide the bar into two portions, as shown in
Fig. 2.31, and write
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Determine the reactions at A and B for the steel bar and load-
ing of Example 2.04, assuming now that a 4.50-mm clearance
exists between the bar and the ground before the loads are ap-
plied (Fig. 2.33). Assume E 200 GPa.

We follow the same procedure as in Example 2.04. Con-
sidering the reaction at B as redundant, we compute the de-
formations and caused, respectively, by the given loads
and by the redundant reaction However, in this case the
total deformation is not zero, but mm. We write
therefore

(2.20)

Substituting for and from (2.17) and (2.18) into (2.20),
and recalling that we have

Solving for we obtain

The reaction at A is obtained from the free-body diagram of
the bar (Fig. 2.32):

RA 900 kN RB 900 kN 115.4 kN 785 kN

RA 300 kN 600 kN RB 0Fy 0:

RB 115.4 103 N 115.4 kN
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1.125 109

200 109

1.95 103 RB

200 109 4.5 10 3 m
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Substituting these values into Eq. (2.8), we obtain

(2.18)

Expressing that the total deformation of the bar must be
zero, we write

(2.19)

and, substituting for and from (2.17) and (2.18) into
(2.19),

Solving for we have

The reaction at the upper support is obtained from the
free-body diagram of the bar (Fig. 2.32). We write

RA 900 kN RB 900 kN 577 kN 323 kN
Fy 0: RA 300 kN 600 kN RB 0
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Once the reactions have been determined, the stresses and
strains in the bar can easily be obtained. It should be noted
that, while the total deformation of the bar is zero, each of its
component parts does deform under the given loading and re-
straining conditions.


