
The main objective of the study of the mechanics of materials is to pro-
vide the future engineer with the means of analyzing and designing var-
ious machines and load-bearing structures.

Both the analysis and the design of a given structure involve the de-
termination of stresses and deformations. This first chapter is devoted to
the concept of stress.

Section 1.2 is devoted to a short review of the basic methods of statics
and to their application to the determination of the forces in the members
of a simple structure consisting of pin-connected members. Section 1.3 will
introduce you to the concept of stress in a member of a structure, and you
will be shown how that stress can be determined from the force in the mem-
ber. After a short discussion of engineering analysis and design (Sec. 1.4),
you will consider successively the normal stresses in a member under ax-
ial loading (Sec. 1.5), the shearing stresses caused by the application of
equal and opposite transverse forces (Sec. 1.6), and the bearing stresses cre-
ated by bolts and pins in the members they connect (Sec. 1.7). These vari-
ous concepts will be applied in Sec. 1.8 to the determination of the stresses
in the members of the simple structure considered earlier in Sec. 1.2.

The first part of the chapter ends with a description of the method you
should use in the solution of an assigned problem (Sec. 1.9) and with a dis-
cussion of the numerical accuracy appropriate in engineering calculations
(Sec. 1.10).

In Sec. 1.11, where a two-force member under axial loading is con-
sidered again, it will be observed that the stresses on an oblique plane in-
clude both normal and shearing stresses, while in Sec. 1.12 you will note
that six components are required to describe the state of stress at a point in
a body under the most general loading conditions.

Finally, Sec. 1.13 will be devoted to the determination from test spec-
imens of the ultimate strength of a given material and to the use of a fac-
tor of safety in the computation of the allowable load for a structural com-
ponent made of that material.

In this section you will review the basic methods of statics while de-
termining the forces in the members of a simple structure.

Consider the structure shown in Fig. 1.1, which was designed to
support a 30-kN load. It consists of a boom AB with a 
rectangular cross section and of a rod BC with a 20-mm-diameter cir-
cular cross section. The boom and the rod are connected by a pin at B
and are supported by pins and brackets at A and C, respectively. Our
first step should be to draw a free-body diagram of the structure by de-
taching it from its supports at A and C, and showing the reactions that
these supports exert on the structure (Fig. 1.2). Note that the sketch of
the structure has been simplified by omitting all unnecessary details.
Many of you may have recognized at this point that AB and BC are two-
force members. For those of you who have not, we will pursue our
analysis, ignoring that fact and assuming that the directions of the re-
actions at A and C are unknown. Each of these reactions, therefore, will
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be represented by two components, Ax and Ay at A, and Cx and Cy at
C. We write the following three equilibrium equations:

(1.1)

(1.2)

(1.3)

We have found two of the four unknowns, but cannot determine the
other two from these equations, and no additional independent equation
can be obtained from the free-body diagram of the structure. We must
now dismember the structure. Considering the free-body diagram of the
boom AB (Fig. 1.3), we write the following equilibrium equation:

(1.4)

Substituting for from (1.4) into (1.3), we obtain Ex-
pressing the results obtained for the reactions at A and C in vector form,
we have

We note that the reaction at A is directed along the axis of the boom
AB and causes compression in that member. Observing that the com-
ponents and of the reaction at C are, respectively, proportional to
the horizontal and vertical components of the distance from B to C, we
conclude that the reaction at C is equal to 50 kN, is directed along the
axis of the rod BC, and causes tension in that member.

CyCx
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These results could have been anticipated by recognizing that AB
and BC are two-force members, i.e., members that are subjected to
forces at only two points, these points being A and B for member AB,
and B and C for member BC. Indeed, for a two-force member the lines
of action of the resultants of the forces acting at each of the two points
are equal and opposite and pass through both points. Using this prop-
erty, we could have obtained a simpler solution by considering the free-
body diagram of pin B. The forces on pin B are the forces and 
exerted, respectively, by members AB and BC, and the 30-kN load
(Fig. 1.4a). We can express that pin B is in equilibrium by drawing
the corresponding force triangle (Fig. 1.4b).

Since the force is directed along member BC, its slope is
the same as that of BC, namely, We can, therefore, write the
proportion

from which we obtain

The forces and exerted by pin B, respectively, on boom AB
and rod BC are equal and opposite to and (Fig. 1.5).FBCFAB
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Knowing the forces at the ends of each of the members, we can
now determine the internal forces in these members. Passing a section
at some arbitrary point D of rod BC, we obtain two portions BD and
CD (Fig. 1.6). Since 50-kN forces must be applied at D to both por-
tions of the rod to keep them in equilibrium, we conclude that an in-
ternal force of 50 kN is produced in rod BC when a 30-kN load is ap-
plied at B. We further check from the directions of the forces and

in Fig. 1.6 that the rod is in tension. A similar procedure would
enable us to determine that the internal force in boom AB is 40 kN and
that the boom is in compression.
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the front cover of this book. From the table on the right-hand side, we note that 1 psi is ap-
proximately equal to 7 kPa, and 1 ksi approximately equal to 7 MPa.

While the results obtained in the preceding section represent a first and
necessary step in the analysis of the given structure, they do not tell us
whether the given load can be safely supported. Whether rod BC, for
example, will break or not under this loading depends not only upon
the value found for the internal force but also upon the cross-
sectional area of the rod and the material of which the rod is made. In-
deed, the internal force actually represents the resultant of ele-
mentary forces distributed over the entire area A of the cross section
(Fig. 1.7) and the average intensity of these distributed forces is equal
to the force per unit area, in the section. Whether or not the rod
will break under the given loading clearly depends upon the ability of
the material to withstand the corresponding value of the inten-
sity of the distributed internal forces. It thus depends upon the force

the cross-sectional area A, and the material of the rod.
The force per unit area, or intensity of the forces distributed over

a given section, is called the stress on that section and is denoted by
the Greek letter (sigma). The stress in a member of cross-sectional
area A subjected to an axial load P (Fig. 1.8) is therefore obtained by
dividing the magnitude P of the load by the area A:

(1.5)

A positive sign will be used to indicate a tensile stress (member in ten-
sion) and a negative sign to indicate a compressive stress (member in
compression).

Since SI metric units are used in this discussion, with P expressed
in newtons (N) and A in square meters the stress will be ex-
pressed in This unit is called a pascal (Pa). However, one finds
that the pascal is an exceedingly small quantity and that, in practice,
multiples of this unit must be used, namely, the kilopascal (kPa), the
megapascal (MPa), and the gigapascal (GPa). We have

When U.S. customary units are used, the force P is usually ex-
pressed in pounds (lb) or kilopounds (kip), and the cross-sectional area
A in square inches The stress will then be expressed in poundsin2 .

 1 GPa 109 Pa 109 N/m2

 1 MPa 106 Pa 106 N/m2

 1 kPa 103 Pa 103 N/m2

N m2.
m2 ,

P

A

FBC,

FBC A

FBC A,

FBC

FBC,

' '



Considering again the structure of Fig. 1.1, let us assume that rod BC
is made of a steel with a maximum allowable stress 
Can rod BC safely support the load to which it will be subjected? The
magnitude of the force in the rod was found earlier to be 50 kN.
Recalling that the diameter of the rod is 20 mm, we use Eq. (1.5) to
determine the stress created in the rod by the given loading. We have

FBC

all 165 MPa.

P

A

50 103 N

314 10 6 m2 159 106 Pa 159 MPa

A r2 20 mm

2

2

10 10 3 m 2 314 10 6 m2

P FBC 50 kN 50 103 N

Since the value obtained for is smaller than the value of the al-
lowable stress in the steel used, we conclude that rod BC can safely
support the load to which it will be subjected. To be complete, our analy-
sis of the given structure should also include the determination of the
compressive stress in boom AB, as well as an investigation of the stresses
produced in the pins and their bearings. This will be discussed later in
this chapter. We should also determine whether the deformations pro-
duced by the given loading are acceptable. The study of deformations
under axial loads will be the subject of Chap. 2. An additional con-
sideration required for members in compression involves the stability
of the member, i.e., its ability to support a given load without expe-
riencing a sudden change in configuration. This will be discussed in
Chap. 10.

tures and machines subjected to given loading conditions. Of even greater
importance to the engineer is the design of new structures and machines,
that is, the selection of appropriate components to perform a given task.
As an example of design, let us return to the structure of Fig. 1.1, and
assume that aluminum with an allowable stress is to be
used. Since the force in rod BC will still be under the
given loading, we must have, from Eq. (1.5),

P FBC 50 kN
all 100 MPa

all

all
P

A
A

P

all

50 103 N

100 106 Pa
 500 10 6 m2

and, since 

We conclude that an aluminum rod 26 mm or more in diameter will be
adequate.

d 2r 25.2 mm

r
A 500 10 6 m2

12.62 10 3 m  12.62 mm

A r2,



As we have already indicated, rod BC of the example considered in the
preceding section is a two-force member and, therefore, the forces 
and acting on its ends B and C (Fig. 1.5) are directed along the
axis of the rod. We say that the rod is under axial loading. An actual
example of structural members under axial loading is provided by the
members of the bridge truss shown in Fig. 1.9. 

FBC

FBC

Returning to rod BC of Fig. 1.5, we recall that the section we passed
through the rod to determine the internal force in the rod and the cor-
responding stress was perpendicular to the axis of the rod; the internal
force was therefore normal to the plane of the section (Fig. 1.7) and the
corresponding stress is described as a normal stress. Thus, formula (1.5)
gives us the normal stress in a member under axial loading:

(1.5)

We should also note that, in formula (1.5), is obtained by divid-
ing the magnitude P of the resultant of the internal forces distributed
over the cross section by the area A of the cross section; it represents,
therefore, the average value of the stress over the cross section, rather
than the stress at a specific point of the cross section.

To define the stress at a given point Q of the cross section, we
should consider a small area (Fig. 1.10). Dividing the magnitude
of by we obtain the average value of the stress over Let-
ting approach zero, we obtain the stress at point Q:

(1.6)lim
A 0
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This bridge truss consists of two-force members that may be in tension
or in compression.
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In general, the value obtained for the stress at a given point Q of
the section is different from the value of the average stress given by
formula (1.5), and is found to vary across the section. In a slender
rod subjected to equal and opposite concentrated loads P and (Fig.
1.11a), this variation is small in a section away from the points of ap-
plication of the concentrated loads (Fig. 1.11c), but it is quite notice-
able in the neighborhood of these points (Fig. 1.11b and d).

It follows from Eq. (1.6) that the magnitude of the resultant of the
distributed internal forces is

P

dF
A

dA

But the conditions of equilibrium of each of the portions of rod shown
in Fig. 1.11 require that this magnitude be equal to the magnitude P of
the concentrated loads. We have, therefore,

(1.7)P dF
A

dA

Mechanics for Engineers, 4th ed.,
McGraw-Hill, New York, 1987, or Vector Mechanics for Engineers, 6th ed., McGraw-Hill,
New York, 1996, secs. 5.2 and 5.3.

which means that the volume under each of the stress surfaces in Fig.
1.11 must be equal to the magnitude P of the loads. This, however, is
the only information that we can derive from our knowledge of statics,
regarding the distribution of normal stresses in the various sections of
the rod. The actual distribution of stresses in any given section is stat-
ically indeterminate. To learn more about this distribution, it is neces-
sary to consider the deformations resulting from the particular mode of
application of the loads at the ends of the rod. This will be discussed
further in Chap. 2.

In practice, it will be assumed that the distribution of normal stresses
in an axially loaded member is uniform, except in the immediate vicin-
ity of the points of application of the loads. The value of the stress
is then equal to and can be obtained from formula (1.5). However,
we should realize that, when we assume a uniform distribution of
stresses in the section, i.e., when we assume that the internal forces are
uniformly distributed across the section, it follows from elementary stat-

P of the internal forces must be applied at the
centroid C of the section (Fig. 1.12). This means that a uniform distri-
bution of stress is possible only if the line of action of the concentrated
loads P and passes through the centroid of the section considered
(Fig. 1.13). This type of loading is called centric loading and will be
assumed to take place in all straight two-force members found in trusses
and pin-connected structures, such as the one considered in Fig. 1.1.
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