
The transverse loading of a beam may consist of concentrated loads
expressed in newtons, pounds, or their multiples, kilonewtons

and kips (Fig. 5.2a), of a distributed load , expressed in N/m, kN/m, lb/ft,
or kips/ft (Fig. 5.2b), or of a combination of both. When the load per
unit length has a constant value over part of the beam (as between A and
B in Fig. 5.2b), the load is said to be uniformly distributed over that part
of the beam.

Beams are classified according to the way in which they are supported.
Several types of beams frequently used are shown in Fig. 5.3. The distance
L shown in the various parts of the figure is called the span. Note that the
reactions at the supports of the beams in parts a, b, and c of the figure in-
volve a total of only three unknowns and, therefore, can be determined by
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This chapter and most of the next one will be devoted to the analysis
and the design of beams, i.e., structural members supporting loads ap-
plied at various points along the member. Beams are usually long,
straight prismatic members, as shown in the photo on the previous page.
Steel and aluminum beams play an important part in both structural and
mechanical engineering. Timber beams are widely used in home con-
struction (Fig. 5.1). In most cases, the loads are perpendicular to the
axis of the beam. Such a transverse loading causes only bending and
shear in the beam. When the loads are not at a right angle to the beam,
they also produce axial forces in the beam.



the methods of statics. Such beams are said to be statically determinate and
will be discussed in this chapter and the next. On the other hand, the re-
actions at the supports of the beams in parts d, e, and f of Fig. 5.3 involve
more than three unknowns and cannot be determined by the methods of
statics alone. The properties of the beams with regard to their resistance to
deformations must be taken into consideration. Such beams are said to be
statically indeterminate and their analysis will be postponed until Chap. 9,
where deformations of beams will be discussed.

Sometimes two or more beams are connected by hinges to form a sin-
gle continuous structure. Two examples of beams hinged at a point H are
shown in Fig. 5.4. It will be noted that the reactions at the supports involve
four unknowns and cannot be determined from the free-body diagram of
the two-beam system. They can be determined, however, by considering
the free-body diagram of each beam separately; six unknowns are involved
(including two force components at the hinge), and six equations are
available.

It was shown in Sec. 4.1 that if we pass a section through a point C
of a cantilever beam supporting a concentrated load P at its end (Fig. 4.6),
the internal forces in the section are found to consist of a shear force 
equal and opposite to the load P and a bending couple M of moment equal
to the moment of P about C. A similar situation prevails for other types of
supports and loadings. Consider, for example, a simply supported beam AB
carrying two concentrated loads and a uniformly distributed load (Fig.
5.5a). To determine the internal forces in a section through point C we first
draw the free-body diagram of the entire beam to obtain the reactions at
the supports (Fig. 5.5b). Passing a section through C, we then draw the
free-body diagram of AC (Fig. 5.5c), from which we determine the shear
force V and the bending couple M.

The bending couple M creates normal stresses in the cross section,
while the shear force V creates shearing stresses in that section. In most
cases the dominant criterion in the design of a beam for strength is the
maximum value of the normal stress in the beam. The determination of the
normal stresses in a beam will be the subject of this chapter, while shear-
ing stresses will be discussed in Chap. 6.

Since the distribution of the normal stresses in a given section depends
only upon the value of the bending moment M in that section and the geo-

be used to determine the maximum stress, as well as the stress at any given

(5.1, 5.2)

where I is the moment of inertia of the cross section with respect to a
centroidal axis perpendicular to the plane of the couple, y is the dis-
tance from the neutral surface, and c is the maximum value of that dis-
tance (Fig. 4.13). We also recall from Sec. 4.4 that, introducing the
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affected by the deformations caused by the shearing stresses. This assumption will be veri-
fied in Sec. 6.5.

M can be positive or negative, depending upon whether the
concavity of the beam at the point considered faces upward or downward. Thus, in the case
considered here of a transverse loading, the sign of M can vary along the beam. On the other
hand, is a positive quantity, the absolute value of M is used in Eq. (5.1).m



elastic section modulus of the beam, the maximum value 
of the normal stress in the section can be expressed as

(5.3)

The fact that is inversely proportional to S underlines the impor-
tance of selecting beams with a large section modulus. Section moduli
of various rolled-steel shapes are given in Appendix C, while the sec-
tion modulus of a rectangular shape can be expressed, as shown in Sec.
4.4, as

(5.4)

where b and h are, respectively, the width and the depth of the cross
section.

Equation (5.3) also shows that, for a beam of uniform cross section,
is proportional to Thus, the maximum value of the normal stress

in the beam occurs in the section where is largest. It follows that one
of the most important parts of the design of a beam for a given loading
condition is the determination of the location and magnitude of the largest
bending moment.

This task is made easier if a bending-moment diagram is drawn, i.e.,
if the value of the bending moment M is determined at various points of
the beam and plotted against the distance x measured from one end of the
beam. It is further facilitated if a shear diagram is drawn at the same time
by plotting the shear V against x.

The sign convention to be used to record the values of the shear and
bending moment will be discussed in Sec. 5.2. The values of V and M will
then be obtained at various points of the beam by drawing free-body dia-
grams of successive portions of the beam. In Sec. 5.3 relations among load,
shear, and bending moment will be derived and used to obtain the shear
and bending-moment diagrams. This approach facilitates the determination
of the largest absolute value of the bending moment and, thus, the deter-
mination of the maximum normal stress in the beam.

In Sec. 5.4 you will learn to design a beam for bending, i.e., so that
the maximum normal stress in the beam will not exceed its allowable value.
As indicated earlier, this is the dominant criterion in the design of a beam.

Another method for the determination of the maximum values of the
shear and bending moment, based on expressing V and M in terms of sin-
gularity functions, will be discussed in Sec. 5.5. This approach lends itself
well to the use of computers and will be expanded in Chap. 9 to facilitate
the determination of the slope and deflection of beams.

Finally, the design of nonprismatic beams, i.e., beams with a variable
cross section, will be discussed in Sec. 5.6. By selecting the shape and size
of the variable cross section so that its elastic section modulus 
varies along the length of the beam in the same way as it is possible
to design beams for which the maximum normal stress in each section is
equal to the allowable stress of the material. Such beams are said to be of
constant strength.
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As indicated in Sec. 5.1, the determination of the maximum absolute
values of the shear and of the bending moment in a beam are greatly
facilitated if V and M are plotted against the distance x measured from
one end of the beam. Besides, as you will see in Chap. 9, the knowl-
edge of M as a function of x is essential to the determination of the de-
flection of a beam.

In the examples and sample problems of this section, the shear and
bending-moment diagrams will be obtained by determining the values
of V and M at selected points of the beam. These values will be found
in the usual way, i.e., by passing a section through the point where they
are to be determined (Fig. 5.6a) and considering the equilibrium of the
portion of beam located on either side of the section (Fig. 5.6b). Since
the shear forces V and have opposite senses, recording the shear at
point C with an up or down arrow would be meaningless, unless we in-
dicated at the same time which of the free bodies AC and CB we are
considering. For this reason, the shear V will be recorded with a sign:
a plus sign if the shearing forces are directed as shown in Fig. 5.6b,
and a minus sign otherwise. A similar convention will apply for the
bending moment It will be considered as positive if the bending

Summarizing the sign conventions we have presented, we state:
The shear V and the bending moment M at a given point of a beam

are said to be positive when the internal forces and couples acting on
each portion of the beam are directed as shown in Fig. 5.7a.

These conventions can be more easily remembered if we note that

1. The shear at any given point of a beam is positive when the
external forces (loads and reactions) acting on the beam tend
to shear off the beam at that point as indicated in Fig. 5.7b.

2. The bending moment at any given point of a beam is positive
when the external forces acting on the beam tend to bend the
beam at that point as indicated in Fig. 5.7c.

It is also of help to note that the situation described in Fig. 5.7, in
which the values of the shear and of the bending moment are positive,
is precisely the situation that occurs in the left half of a simply sup-
ported beam carrying a single concentrated load at its midpoint. This
particular case is fully discussed in the next example.
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Draw the shear and bending-moment diagrams for a simply
supported beam AB of span L subjected to a single concen-
trated load P at it midpoint C (Fig. 5.8).

We first determine the reactions at the supports from the
free-body diagram of the entire beam (Fig. 5.9a); we find that
the magnitude of each reaction is equal to 

Next we cut the beam at a point D between A and C and
draw the free-body diagrams of AD and DB (Fig. 5.9b). As-
suming that shear and bending moment are positive, we direct
the internal forces V and and the internal couples M and

as indicated in Fig. 5.7a. Considering the free body AD
and writing that the sum of the vertical components and the
sum of the moments about D of the forces acting on the free
body are zero, we find and Both the
shear and the bending moment are therefore positive; this may
be checked by observing that the reaction at A tends to shear
off and to bend the beam at D as indicated in Figs. 5.7b and c.
We now plot V and M between A and C (Figs. 5.9d and e); the
shear has a constant value while the bending mo-
ment increases linearly from at to 
at

Cutting, now, the beam at a point E between C and B and
considering the free body EB (Fig. 5.9c), we write that the sum
of the vertical components and the sum of the moments about
E of the forces acting on the free body are zero. We obtain

and The shear is therefore neg-
ative and the bending moment positive; this can be checked
by observing that the reaction at B bends the beam at E as in-
dicated in Fig. 5.7c but tends to shear it off in a manner op-
posite to that shown in Fig. 5.7b. We can complete, now, the
shear and bending-moment diagrams of Figs. 5.9d and e; the
shear has a constant value between C and B, while
the bending moment decreases linearly from at
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We note from the foregoing example that, when a beam is subjected
only to concentrated loads, the shear is constant between loads and the
bending moment varies linearly between loads. In such situations, there-
fore, the shear and bending-moment diagrams can easily be drawn, once
the values of V and M have been obtained at sections selected just to
the left and just to the right of the points where the loads and reactions
are applied (see Sample Prob. 5.1).

Draw the shear and bending-moment diagrams for a cantilever
beam AB of span L supporting a uniformly distributed load 
(Fig. 5.10).

We cut the beam at a point C between A and B and draw
the free-body diagram of AC (Fig. 5.11a), directing V and M
as indicated in Fig. 5.7a. Denoting by x the distance from A
to C and replacing the distributed load over AC by its result-
ant x applied at the midpoint of AC, we write

We note that the shear diagram is represented by an oblique
straight line (Fig. 5.11b) and the bending-moment diagram by
a parabola (Fig. 5.11c). The maximum values of V and M both
occur at B, where we have
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For the timber beam and loading shown, draw the shear and bending-moment
diagrams and determine the maximum normal stress due to bending.

Reactions. Considering the entire beam as a free body, we find

Shear and Bending-Moment Diagrams. We first determine the inter-
nal forces just to the right of the 20-kN load at A. Considering the stub of beam
to the left of section 1 as a free body and assuming V and M to be positive 
(according to the standard convention), we write

We next consider as a free body the portion of beam to the left of section 2
and write

The shear and bending moment at sections 3, 4, 5, and 6 are determined
in a similar way from the free-body diagrams shown. We obtain

For several of the latter sections, the results may be more easily obtained by
considering as a free body the portion of the beam to the right of the section.
For example, for the portion of the beam to the right of section 4, we have

We can now plot the six points shown on the shear and bending-moment
diagrams. As indicated earlier in this section, the shear is of constant value be-
tween concentrated loads, and the bending moment varies linearly; we obtain
therefore the shear and bending-moment diagrams shown.

Maximum Normal Stress. It occurs at B, where is largest. We use
Eq. (5.4) to determine the section modulus of the beam:

Substituting this value and into Eq. (5.3):

Maximum normal stress in the beam 60.0 MPa

m

MB

S

50 103 N m

833.33 10 6 60.00 106 Pa

M MB 50 103 N m

S 1
6 bh2 1

6 0.080 m 0.250 m 2 833.33 10 6 m3

M

M4 0 M4 14 kN 2 m 0 M4 28 kN m
Fy 0 V4 40 kN 14 kN 0 V4 26 kN

V6 14 kN M6 0
V5 14 kN M5 28 kN m
V4 26 kN M4 28 kN m
V3 26 kN M3 50 kN m

M2 0 20 kN 2.5 m M2 0 M2 50 kN m
Fy 0 20 kN V2 0 V2 20 kN

M1 0 20 kN 0 m M1 0 M1 0
Fy 0 20 kN V1 0 V1 20 kN

RB 40 kN RD 14 kN

'
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Equivalent Loading of Beam. The 10-kip load is replaced by an equiv-
alent force-couple system at D. The reaction at B is determined by consider-
ing the beam as a free body.

a. Shear and Bending-Moment Diagrams

From A to C. We determine the internal forces at a distance x from point
A by considering the portion of beam to the left of section 1. That part of the
distributed load acting on the free body is replaced by its resultant, and we
write

Since the free-body diagram shown can be used for all values of x smaller than
8 ft, the expressions obtained for V and M are valid in the region 

From C to D. Considering the portion of beam to the left of section 2
and again replacing the distributed load by its resultant, we obtain

These expressions are valid in the region 

From D to B. Using the position of beam to the left of section 3, we ob-
tain for the region 

The shear and bending-moment diagrams for the entire beam can now be plot-
ted. We note that the couple of moment applied at point D intro-
duces a discontinuity into the bending-moment diagram.

b. Maximum Normal Stress to the Left and Right of Point D. From
Appendix C we find that for the rolled-steel shape,
about the X-X axis.

To the left of D: We have Substi-
tuting for and S into Eq. (5.3), we write

To the right of D: We have Sub-
stituting for and S into Eq. (5.3), we write

m 14.10 ksim

M

S

1776 kip in.

126 in3 14.10 ksi

M
M 148 kip ft 1776 kip in.

m 16.00 ksim

M

S

2016 kip in.

126 in3 16.00 ksi

M
M 168 kip ft 2016 kip in.

S 126 in3W10 112

20 kip ft

V 34 kips M 226 34 x kip ft

11 ft x 16 ft

8 ft x 11 ft.

M2 0  24 x 4 M 0 M 96 24x kip ft
Fy 0 24 V 0 V 24 kips

0 x 8 ft.

M1 0  3x 1
2 x M 0 M 1.5x2 kip ft

Fy 0 3x V 0 V 3x kips

The structure shown consists of a rolled-steel beam AB and of
two short members welded together and to the beam. (a) Draw the shear and
bending-moment diagrams for the beam and the given loading. (b) Determine
the maximum normal stress in sections just to the left and just to the right of
point D.
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