
However, if a two-force member is loaded axially, but eccentrically as
shown in Fig. 1.14a, we find from the conditions of equilibrium of the
portion of member shown in Fig. 1.14b that the internal forces in a
given section must be equivalent to a force P applied at the centroid of
the section and a couple M of moment The distribution of
forces cannot be
uniform. Nor can the distribution of stresses be symmetric as shown in Fig.
1.11. This point will be discussed in detail in Chap. 4.

The internal forces and the corresponding stresses discussed in Secs.
1.2 and 1.3 were normal to the section considered. A very different type
of stress is obtained when transverse forces P and are applied to a
member AB (Fig. 1.15). Passing a section at C between the points of
application of the two forces (Fig. 1.16a), we obtain the diagram of por-
tion AC shown in Fig. 1.16b. We conclude that internal forces must ex-
ist in the plane of the section, and that their resultant is equal to P. These
elementary internal forces are called shearing forces, and the magni-
tude P of their resultant is the shear in the section. Dividing the shear

P

M Pd.
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P by the area A of the cross section, we obtain the average shearing
stress in the section. Denoting the shearing stress by the Greek letter 
(tau), we write

(1.8)

It should be emphasized that the value obtained is an average value
of the shearing stress over the entire section. Contrary to what we said
earlier for normal stresses, the distribution of shearing stresses across
the section cannot be assumed uniform. As you will see in Chap. 6, the
actual value of the shearing stress varies from zero at the surface of
the member to a maximum value that may be much larger than the
average value ave.

max

ave

P

A

Cutaway view of a connection with a bolt in shear.

Shearing stresses are commonly found in bolts, pins, and rivets
used to connect various structural members and machine components
(Fig. 1.17). Consider the two plates A and B, which are connected by a
bolt CD (Fig. 1.18). If the plates are subjected to tension forces of mag-
nitude F, stresses will develop in the section of bolt corresponding to
the plane . Drawing the diagrams of the bolt and of the portion lo-
cated above the plane (Fig. 1.19), we conclude that the shear P in
the section is equal to F. The average shearing stress in the section is
obtained, according to formula (1.8), by dividing the shear by
the area A of the cross section:

(1.9)ave
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The bolt we have just considered is said to be in single shear. Dif-
ferent loading situations may arise, however. For example, if splice
plates C and D are used to connect plates A and B (Fig. 1.20), shear
will take place in bolt HJ in each of the two planes and (and
similarly in bolt EG). The bolts are said to be in double shear. To de-
termine the average shearing stress in each plane, we draw free-body
diagrams of bolt HJ and of the portion of bolt located between the two
planes (Fig. 1.21). Observing that the shear P in each of the sections is

we conclude that the average shearing stress isP F 2,

LLKK

(1.10)ave

P

A

F 2

A

F
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Bolts, pins, and rivets create stresses in the members they connect, along
the bearing surface, or surface of contact. For example, consider again
the two plates A and B connected by a bolt CD that we have discussed
in the preceding section (Fig. 1.18). The bolt exerts on plate A a force
P equal and opposite to the force F exerted by the plate on the bolt
(Fig. 1.22). The force P represents the resultant of elementary forces
distributed on the inside surface of a half-cylinder of diameter d and of
length t equal to the thickness of the plate. Since the distribution of

one uses in practice an average nominal value of the stress, called the
bearing stress, obtained by dividing the load P by the area of the rectan-
gle representing the projection of the bolt on the plate section (Fig. 1.23).
Since this area is equal to td, where t is the plate thickness and d the di-
ameter of the bolt, we have

b

(1.11)b
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We are now in a position to determine the stresses in the members and
connections of various simple two-dimensional structures and, thus, to
design such structures.

As an example, let us return to the structure of Fig. 1.1 that we
have already considered in Sec. 1.2 and let us specify the supports and
connections at A, B, and C. As shown in Fig. 1.24, the 20-mm-diameter
rod BC has flat ends of rectangular cross section, while
boom AB has a rectangular cross section and is fitted with
a clevis at end B. Both members are connected at B by a pin from which
the 30-kN load is suspended by means of a U-shaped bracket. Boom
AB is supported at A by a pin fitted into a double bracket, while
rod BC is connected at C to a single bracket. All pins are 25 mm in
diameter.

30 50-mm
20 40-mm

As we found in Secs. 1.2 and 1.4, the force in rod BC is
(tension) and the area of its circular cross section is

the corresponding average normal stress is
However, the flat parts of the rod are also underBC 159 MPa.

A 314 10 6 m2;
FBC 50 kN



tension and at the narrowest section, where a hole is located, we have

The corresponding average value of the stress, therefore, is

Note that this is an average value; close to the hole, the stress will ac-
tually reach a much larger value, as you will see in Sec. 2.18. It is clear
that, under an increasing load, the rod will fail near one of the holes
rather than in its cylindrical portion; its design, therefore, could be im-
proved by increasing the width or the thickness of the flat ends of the
rod.

Turning now our attention to boom AB, we recall from Sec. 1.2 that
the force in the boom is (compression). Since 

the average value of the normal stress in the
main part of the rod, between pins A and B, is

Note that the sections of minimum area at A and B are not under stress,
since the boom is in compression, and, therefore, pushes on the pins
(instead of pulling on the pins as rod BC does).

To determine the shearing stress in a connection such as a bolt,
pin, or rivet, we first clearly show the forces exerted by the various
members it connects. Thus, in the case of pin C of our example (Fig.
1.25a), we draw Fig. 1.25b, showing the 50-kN force exerted by mem-
ber BC on the pin, and the equal and opposite force exerted by the
bracket. Drawing now the diagram of the portion of the pin located
below the plane where shearing stresses occur (Fig. 1.25c), we
conclude that the shear in that plane is Since the cross-
sectional area of the pin is

we find that the average value of the shearing stress in the pin at C is

Considering now the pin at A (Fig. 1.26), we note that it is in dou-
ble shear. Drawing the free-body diagrams of the pin and of the por-
tion of pin located between the planes and where shearing
stresses occur, we conclude that and that

ave
P

A

20 kN

491 10 6 m2 40.7 MPa

P 20 kN
EEDD

ave

P

A

50 103 N

491 10 6 m2 102 MPa

A r2 25 mm

2

2

12.5 10 3 m 2 491 10 6 m2

P 50 kN.
DD

AB
40 103 N

1.5 10 3 m2 26.7 106 Pa 26.7 MPa

50 mm 1.5 10 3 m2,
A 30 mm

FAB 40 kN

BC end
P

A

50 103 N

300 10 6 m2 167 MPa

A 20 mm 40 mm 25 mm 300 10 6 m2
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Considering the pin at B (Fig. 1.27a), we note that the pin may be
divided into five portions which are acted upon by forces exerted by
the boom, rod, and bracket. Considering successively the portions DE
(Fig. 1.27b) and DG (Fig. 1.27c), we conclude that the shear in section
E is while the shear in section G is Since
the loading of the pin is symmetric, we conclude that the maximum
value of the shear in pin B is and that the largest shear-
ing stresses occur in sections G and H, where

PG 25 kN,

PG 25 kN.PE 15 kN,

ave

PG

A

25 kN

491 10 6 m2 50.9 MPa

To determine the
nominal bearing stress at A in member AB, we use formula (1.11) of
Sec. 1.7. From Fig. 1.24, we have and Re-
calling that we haveP FAB 40 kN,

d 25 mm.t 30 mm

b

P

td

40 kN

30 mm 25 mm
53.3 MPa

To obtain the bearing stress in the bracket at A, we use 
and d 25 mm: 50 mm

t 2 25 mm

b

P

td

40 kN

50 mm 25 mm
32.0 MPa

The bearing stresses at B in member AB, at B and C in member
BC, and in the bracket at C are found in a similar way.

You should approach a problem in mechanics of materials as you would
approach an actual engineering situation. By drawing on your own ex-
perience and intuition, you will find it easier to understand and formu-
late the problem. Once the problem has been clearly stated, however,
there is no place in its solution for your particular fancy. Your solution
must be based on the fundamental principles of statics and on the prin-
ciples you will learn in this course. Every step you take must be justi-

swer has been obtained, it should be checked. Here again, you may call
upon your common sense and personal experience. If not completely
satisfied with the result obtained, you should carefully check your for-
mulation of the problem, the validity of the methods used in its solu-
tion, and the accuracy of your computations.

The statement of the problem should be clear and precise. It should
contain the given data and indicate what information is required. A sim-
plified drawing showing all essential quantities involved should be in-
cluded. The solution of most of the problems you will encounter will
necessitate that you first determine the reactions at supports and inter-



nal forces and couples. This will require the drawing of one or several
free-body diagrams, as was done in Sec. 1.2, from which you will write
equilibrium equations. These equations can be solved for the unknown
forces, from which the required stresses and deformations will be
computed.

After the answer has been obtained, it should be carefully checked.
Mistakes in reasoning can often be detected by carrying the units
through your computations and checking the units obtained for the an-
swer. For example, in the design of the rod discussed in Sec. 1.4, we
found, after carrying the units through our computations, that the re-
quired diameter of the rod was expressed in millimeters, which is the
correct unit for a dimension; if another unit had been found, we would
have known that some mistake had been made.

Errors in computation will usually be found by substituting the nu-
merical values obtained into an equation which has not yet been used
and verifying that the equation is satisfied. The importance of correct
computations in engineering cannot be overemphasized.

The accuracy of the solution of a problem depends upon two items:
(1) the accuracy of the given data and (2) the accuracy of the compu-
tations performed.

The solution cannot be more accurate than the less accurate of these
two items. For example, if the loading of a beam is known to be 75,000 lb
with a possible error of 100 lb either way, the relative error which mea-
sures the degree of accuracy of the data is

In computing the reaction at one of the beam supports, it would then
be meaningless to record it as 14,322 lb. The accuracy of the solution
cannot be greater than 0.13%, no matter how accurate the computations
are, and the possible error in the answer may be as large as

The answer should be properly recorded
as

In engineering problems, the data are seldom known with an ac-
curacy greater than 0.2%. It is therefore seldom justified to write the
answers to such problems with an accuracy greater than 0.2 percent. A
practical rule is to use 4 figures to record numbers beginning with a

given in a problem should be assumed known with a comparable de-
gree of accuracy. A force of 40 lb, for example, should be read 40.0 lb,
and a force of 15 lb should be read 15.00 lb.

Pocket calculators and computers are widely used by practicing en-
gineers and engineering students. The speed and accuracy of these de-
vices facilitate the numerical computations in the solution of many prob-
lems. However, students should not record more significant figures than
can be justified merely because they are easily obtained. As noted above,
an accuracy greater than 0.2% is seldom necessary or meaningful in the
solution of practical engineering problems.

14,320 20 lb.
 20 lb.0.13 100 14,322 lb

100 lb

75,000 lb
0.0013 0.13



In the hanger shown, the upper portion of link ABC is in. thick and the lower
portions are each in. thick. Epoxy resin is used to bond the upper and lower
portions together at B. The pin at A is of diameter while a -diameter
pin is used at C. Determine (a) the shearing stress in pin A, (b) the shearing
stress in pin C, (c) the largest normal stress in link ABC, (d ) the average shear-
ing stress on the bonded surfaces at B, (e) the bearing stress in the link at C.

1
4-in.3

8-in.

1
4

3
8

Free Body: Entire Hanger. Since the link ABC is a two-force member,
the reaction at A is vertical; the reaction at D is represented by its components

and We write

FAC 750 lb FAC 750 lb tension
500 lb 15 in. FAC 10 in. 0MD 0:

y.x

a. Shearing Stress in Pin A. Since this -diameter pin is in single
shear, we write

A 6790 psiA

FAC

A

750 lb
1
4 0.375 in. 2

3
8-in.

b. Shearing Stress in Pin C. Since this -diameter pin is in double
shear, we write

C 7640 psiC

1
2 FAC

A

375 lb
1
4 0.25 in. 2

1
4-in.

c. Largest Normal Stress in Link ABC. The largest stress is found
where the area is smallest; this occurs at the cross section at A where the 
hole is located. We have

A 2290 psiA

FAC

Anet

750 lb
3
8 in. 1.25 in. 0.375 in.

750 lb

0.328 in2

3
8-in.

d. Average Shearing Stress at B. We note that bonding exists on both
sides of the upper portion of the link and that the shear force on each side is

The average shearing stress on each surface is thus

B 171.4 psiB

F1

A

375 lb

1.25 in. 1.75 in.

2 375 lb.F1 750 lb

e. Bearing Stress in Link at C. For each portion of the link,
and the nominal bearing area is 

b 6000 psib

F1

A

375 lb

0.0625 in2

0.25 in. 0.25 in. 0.0625 in2.
F1 375 lb



a. Diameter of the Bolt. Since the bolt is in double shear,

We will use

At this point we check the bearing stress between the 20-mm-thick plate and
the 28-mm-diameter bolt.

d 28 mm

F1

A

60 kN
1
4 d2

100 MPa
60 kN
1
4 d2

d 27.6 mm

1
2P 60 kN.

F1

b
P

td

120 N

0.020 m 0.028 m
214 MPa 350 MPa OK

b. Dimension b at Each End of the Bar. We consider one of the end
portions of the bar. Recalling that the thickness of the steel plate is 
and that the average tensile stress must not exceed 175 MPa, we write

t 20 mm

c. Dimension h of the Bar. Recalling that the thickness of the steel plate
is we havet 20 mm,

1
2 P

ta
175 MPa

60 kN

0.02 m a
a 17.14 mm

b 62.3 mmb d 2a 28 mm 2 17.14 mm

We will use h 35 mm

P

th
175 MPa

120 kN

0.020 m h
h 34.3 mm

The steel tie bar shown is to be designed to carry a tension force of magnitude
when bolted between double brackets at A and B. The bar will be

fabricated from 20-mm-thick plate stock. For the grade of steel to be used, the
maximum allowable stresses are:

Design the tie bar by determining the required values of (a) the 
diameter d of the bolt, (b) the dimension b at each end of the bar, (c) the 
dimension h of the bar.

350  MPa.
175 MPa, 100 MPa, b

P 120 kN
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