
Thin-walled pressure vessels provide an important application of the
analysis of plane stress. Since their walls offer little resistance to bend-
ing, it can be assumed that the internal forces exerted on a given por-
tion of wall are tangent to the surface of the vessel (Fig. 7.48). The re-
sulting stresses on an element of wall will thus be contained in a plane
tangent to the surface of the vessel.

Our analysis of stresses in thin-walled pressure vessels will be lim-
ited to the two types of vessels most frequently encountered: cylindri-
cal pressure vessels and spherical pressure vessels (Figs. 7.49 and 7.50).

Consider a cylindrical vessel of inner radius r and wall thickness t
containing a fluid under pressure (Fig. 7.51). We propose to determine
the stresses exerted on a small element of wall with sides respectively
parallel and perpendicular to the axis of the cylinder. Because of the
axisymmetry of the vessel and its contents, it is clear that no shearing
stress is exerted on the element. The normal stresses and shown
in Fig. 7.51 are therefore principal stresses. The stress is known as
the hoop stress, because it is the type of stress found in hoops used to
hold together the various slats of a wooden barrel, and the stress is
called the longitudinal stress.

In order to determine the hoop stress we detach a portion of the
vessel and its contents bounded by the xy plane and by two planes par-
allel to the yz plane at a distance from each other (Fig. 7.52). The
forces parallel to the z axis acting on the free body defined in this fash-
ion consist of the elementary internal forces on the wall sections,
and of the elementary pressure forces p dA exerted on the portion of
fluid included in the free body. Note that p denotes the gage pressure of
the fluid, i.e., the excess of the inside pressure over the outside atmo-
spheric pressure. The resultant of the internal forces is equal to the
product of and of the cross-sectional area of the wall, while
the resultant of the pressure forces p dA is equal to the product of p and
of the area Writing the equilibrium equation we haveFz 0,2r x.
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and, solving for the hoop stress 

(7.30)

To determine the longitudinal stress we now pass a section per-
pendicular to the x axis and consider the free body consisting of the
portion of the vessel and its contents located to the left of the section
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(Fig. 7.53). The forces acting on this free body are the elementary in-
ternal forces on the wall section and the elementary pressure
forces p dA exerted on the portion of fluid included in the free body.
Noting that the area of the fluid section is and that the area of the
wall section can be obtained by multiplying the circumference of
the cylinder by its wall thickness t

and, solving for the longitudinal stress 

(7.31)

We note from Eqs. (7.30) and (7.31) that the hoop stress is twice as
large as the longitudinal stress 
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Using the mean radius of the wall section, in computing the resultant of the
forces on that section, we would obtain a more accurate value of the longitudinal stress,
namely,

However, for a thin-walled pressure vessel, the term is sufficiently small to allow the use
of Eq. (7.31) for engineering design and analysis. If a pressure vessel is not thin-walled (i.e.,
if is not small), the stresses and vary across the wall and must be determined by
the methods of the theory of elasticity.
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A and B that correspond
respectively to the principal stresses and (Fig. 7.54), and recall-
ing that the maximum in-plane shearing stress is equal to the radius of
this circle, we have

(7.33)

This stress corresponds to points D and E and is exerted on an element
obtained by rotating the original element of Fig. 7.51 through within
the plane tangent to the surface of the vessel. The maximum shearing
stress in the wall of the vessel, however, is larger. It is equal to the ra-
dius of the circle of diameter OA and corresponds to a rotation of 
about a longitudinal axis and out of the plane

(7.34)

We now consider a spherical vessel of inner radius r and wall thick-
ness t, containing a fluid under a gage pressure p. For reasons of sym-
metry, the stresses exerted on the four faces of a small element of wall
must be equal (Fig. 7.55). We have

(7.35)

To determine the value of the stress, we pass a section through the cen-
ter C of the vessel and consider the free body consisting of the portion
of the vessel and its contents located to the left of the section (Fig. 7.56).
The equation of equilibrium for this free body is the same as for the
free body of Fig. 7.53. We thus conclude that, for a spherical vessel,

(7.36)

transformations of stress within the plane tangent to the surface of the
vessel reduces to a point (Fig. 7.57); we conclude that the in-plane nor-
mal stress is constant and that the in-plane maximum shearing stress is
zero. The maximum shearing stress in the wall of the vessel, however,
is not zero; it is equal to the radius of the circle of diameter OA and
corresponds to a rotation of out of the plane of stress. We have
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It should be observed that, while the third principal stress is zero on the outer surface of
the vessel, it is equal to on the inner surface, and is represented by a point on
a Mohr-circle diagram. Thus, close to the inside surface of the vessel, the maximum shear-
ing stress is equal to the radius of a circle of diameter CA, and we have

For a thin-walled vessel, however, the term t/r is small, and we can neglect the variation of
across the wall section. This remark also applies to spherical pressure vessels.max
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a. Spherical Cap. Using Eq. (7.36), we write

to a point (A, B) on the horizontal axis and that all in-plane shearing stresses
are zero. On the surface of the cap the third principal stress is zero and corre-
sponds to point O AO, point represents the
maximum shearing stress; it occurs on planes at to the plane tangent to the
cap.

b. Cylindrical Body of the Tank. We first determine the hoop stress 
and the longitudinal stress Using Eqs. (7.30) and (7.32), we write

Stresses at the Weld. Noting that both the hoop stress and the longitu-

An element having a face parallel to the weld is obtained by rotating the
face perpendicular to the axis Ob counterclockwise through Therefore, on

on the weld by rotating radius CB counterclockwise through 

Since is below the horizontal axis, tends to rotate the element
counterclockwise.
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A compressed-air tank is supported by two cradles as shown; one of the cra-
dles is designed so that it does not exert any longitudinal force on the tank.
The cylindrical body of the tank has a 30-in. outer diameter and is fabricated
from a steel plate by butt welding along a helix that forms an angle of

with a transverse plane. The end caps are spherical and have a uniform
wall thickness of For an internal gage pressure of 180 psi, determine
(a) the normal stress and the maximum shearing stress in the spherical caps,
(b) the stresses in directions perpendicular and parallel to the helical weld.

5
16 in.

25

3
8 in.

'

'

'


