

Introduction

Electronic communication systems can be categorized by the types of information signals transmitted by the system.

- There are two types of signal "Analog and Digital".
- An analog signal is a continuously varying signal, such as a sine wave tone. Voice and video signals are analog signals.
- A digital has only two distinct levels, high and low, digital TV signal or ON/OFF.

3

Why do we need to do Modulation?

- 1. Reduce the height of antenna
- 2. Avoids mixing of signals
- 3. Increases the range of communication
- 4. Allows multiplexing of signals
- 5. Allows adjustments in the bandwidth
- 6. Improves quality of reception

7

Baseband Signals and Baseband Transmission

- The original information signals (<u>baseband signals</u>) may be transmitted over the medium.
- Putting the original signal directly into the medium is referred to as (baseband transmission).
- Although digital transmission can be made up of signal that originated in digital form, such as <u>computer data</u>; analog signals can be converted into digital form and then transmitted. Regardless of whether the original information signals are <u>analog or digital, they are all referred to as</u> <u>"baseband signals</u>".

Modulation Techniques

- In the modulation process, the baseband voice, video, or digital signal modifies another, higher-frequency signal called the <u>carrier</u>, which is usually a <u>sine wave</u>.
- A sine wave carrier can be modified by the intelligence signal through
 - 1) Amplitude Modulation (AM)
 - 2) Frequency Modulation (FM)
 - 3) Phase Modulation (PM)

Example1: Suppose that Vmax value read from the graticule on an oscilloscope screen is 4.6 divisions and Vmin is 0.7 divisions. Calculate the modulation index and percentage of modulation.

Solution

The modulation index is defined as

$$m = \frac{V_m}{V_c} = \frac{\frac{V_{max} - V_{min}}{2}}{\frac{V_{max} + V_{min}}{2}} = \frac{V_{max} - V_{min}}{V_{max} + V_{min}} = \frac{4.6 - 0.7}{4.6 + 0.7} = 0.736$$

The percentage of modulation is defined as

 $M_{\%} = M \cdot 100\% = 0.736 \cdot 100\% = 73.6\%$

Answer

 $M = 0.736, M_{\%} = 73.6\%.$

17

Example1: Suppose that Vmax value read from the graticule on an oscilloscope screen is 5.9 divisions and Vmin is 1.2 divisions. Calculate the modulation index.

18

Example1: Suppose that Vmax value read from the graticule on an oscilloscope screen is 5.9 divisions and Vmin is 1.2 divisions. Calculate the modulation index.

Solution:

$$m = \frac{V_m}{V_c} = \frac{\frac{V_{max} - V_{min}}{2}}{\frac{V_{max} + V_{min}}{2}} = \frac{V_{max} - V_{min}}{V_{max} + V_{min}} = \frac{5.9 \cdot 1.2}{5.9 + 1.2} = 0.662$$

19

Homework...

1- Suppose that Vmax value read from the graticule on an oscilloscope screen is 2.8 divisions and Vmin is 0.4 divisions. Calculate the modulation index and percentage of modulation.

2- Suppose that Vmax value read from the graticule on an oscilloscope screen is 3.5 divisions and Vmin is 1.2 divisions. Calculate the modulation index and percentage of modulation.

3- Suppose that Vmax value read from the graticule on an oscilloscope screen is 5 divisions and Vmin is 2 divisions. Calculate the modulation index and percentage of modulation.

4- Suppose that Vmax value read from the graticule on an oscilloscope screen is 4 divisions and Vmin is 1.5 divisions. Calculate the modulation index and percentage of modulation.

