Chapter 4

Q1/ Answer the following branches:

- A) Define the Brewster's angle.
- B) Calculate the Brewster angle for a wave impinging on ground having a permittivity of $\varepsilon_r = 5$.

Solution:

A) Brewster's angle (also known as the polarization angle) is an angle of incidence at which the wave with a particular polarization is perfectly transmitted through a dielectric surface, with no reflection (reflection coefficient is equal to zero).

B)

$$sin\theta_B = \frac{\sqrt{\varepsilon_r - 1}}{\sqrt{\varepsilon_r^2 - 1}} = \frac{\sqrt{5 - 1}}{\sqrt{25 - 1}} = \frac{\sqrt{4}}{\sqrt{24}} = \frac{2}{4.89} = 0.4$$
$$\theta_B = sin^{-1}(0.4) = 23.5^0$$

Q2/A mobile is located 4 *km* away from a base station and uses a vertical $\lambda/4$ monopole antenna with a gain of 2.75 dB to receive cellular radio signals. The E-field at 1 *km* from the transmitter is measured to be 2×10^{-3} V/m. The carrier frequency used for this system is 900 MHz.

- a) Find the length and the effective aperture A_e of the receiving antenna.
- b) Find the received power at the mobile using the 2-ray ground reflection model assuming the height of the transmitting antenna is 60m and the receiving antenna is 2m above ground.

Solution:

d=4 km

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{900 \times 10^6} = 0.333m$$

Length of the antenna $= \lambda/4 = 0.333/4 = 0.0833m = 8.33cm$.

$$G=10^{(2.75/10)}=1.884$$

$$A_{e} = \frac{G\lambda^{2}}{4\pi} = \frac{1.884(0.333)^{2}}{4\pi} = 0.0166 \, m^{2} = 166 \, cm^{2}$$

$$E_{TOT}(d) \approx \frac{2E_{0}d_{0}}{d} \frac{2\pi h_{i}h_{r}}{\lambda d} \qquad V/m$$

$$= \frac{2 \times 2 \times 10^{-3} \times 1 \times 10^{3}}{4 \times 10^{3}} \left[\frac{2\pi \times 60 \times 2}{0.333 \times 4 \times 10^{3}} \right] = 5.66 \times 10^{-4} \, V/m$$

The received power at a distance d can be obtained using

$$P_r(d) = \frac{|E|^2}{120\pi} A_e = \frac{(5.66 \times 10^{-4})^2}{377} (0.0166)$$
$$= 1.41 \times 10^{-11} W = -108.5 dBW \, or -78.5 \, dBm$$

Q3/ If 65 watts transmitter power is applied to a unity gain antenna with a 900 MHz carrier frequency. Assume unity gain for the receiver antenna.

- A) Express the transmitter power in units of *dBm* and *dBW*.
- B) Find the received power in dBm at a free space distance of 100m from the antenna.
- C) What is Pr(12 km)?
- D) Find the effective aperture A_e of the transmitter antenna.

Solution:

<u>A)</u>

$$P_t = 65 W = 65 \times 10^3 mW$$

 $P_t(dBm) = 10\log[P_t(mW)] = 10\log[65 \times 10^3] = 48 dBm$

$$P_t(dBm) = 10\log[P_t(W)] = 10\log[65] = 18dBW$$

B)

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{900 \times 10^6} = 0.33m$$

$$P_r = \frac{P_t G_t G_r}{L} \left(\frac{\lambda}{4\pi d}\right)^2$$

dBm

$$P_r = \frac{65 \times 1 \times 1}{1} \left(\frac{0.33}{4\pi \times 100}\right)^2 = 4.48 \times 10^{-6} \ W = 4.48 \times 10^{-3} \ mW$$
$$P_{r(dBm)} = 10 \ log \left(P_r(mW)\right) = 10 \ log \left(4.48 \times 10^{-3}\right) = -23.4 \ dBm$$

c)

$$P_r (12 \ km) = P_{r(dBm)}(100) + 20 \ log \left(\frac{100}{12000}\right) = -23.4 - 41.58 = -65 \ dBm$$
$$A_e = \frac{G\lambda^2}{4\pi} = \frac{1(0.33)^2}{4\pi} = 0.00867 \ m^2 = 86.7 \ cm^2$$
c)

Q4/ If 60 watts applied to a 1.5 gain antenna with a 0.9 *GHz* carrier frequency, find the received power in dBm at a free space distance of 150*m* from the antenna. What is $Pr(9 \ km)$? Assume gain=2 for the receiver antenna.

Solution:

$$\lambda = \frac{C}{f} = \frac{3 \ x \ 10^8}{0.9 \ x \ 10^9} = 0.333 \ m$$

$$P_r(d) = \frac{P_t G_t G_r}{L} \left(\frac{\lambda}{4\pi d}\right)^2$$

$$P_r(150) = \frac{60 x \, 1.5 \, x \, 2}{1} \left(\frac{0.333}{4\pi \, 150}\right)^2 = 5.61 \, x \, 10^{-3} \, mW$$

$$= 10 \log(5.61 \, x \, 10^{-3}) = -22.5 \, dBm$$

$$P_r(9km) = P_{r(dBm)}(150) + 20 \log\left(\frac{150}{9000}\right) = -22.5 \, dBm - 35.56 \, dB = -58.06$$

Q5/ Find the far-field distance for an antenna with maximum dimension of 3m and operating frequency of 950 *MHz*.

Solution:

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{950} = 0.315m$$
$$d_f = \frac{2 \times D^2}{\lambda} = \frac{2 \times 3^2}{0.315} = 57.14m$$

Q6/ Calculate the link budget from one side only, when the 39920 km GEO satellite communication link with a transmitter power of 2kW that is applied to the transmitter antenna gain of 40dBi. The satellite receiver is connected to an antenna with 35dBi gain and a receive sensitivity of -100dBm. The cables in both systems are short, with a loss of 1 dB at each side at the 12 GHz frequency of operation.

Solution:

 $Tx \ Power = 10 \log(2000 \times 10^3 mW) = 63 \ dBm$ $Total \ gain = Tx \ Power + Tx \ Antenna \ Gain \ - \ Cable \ loss(Tx)$ $+ Rx \ Antenna \ gain \ - \ Cable \ loss(Rx)$ $= 63 \ dB \ + 40 \ dBi \ - \ 1 \ dB \ + \ 35 \ dBi \ - \ 1 \ dB \ = \ 136 \ dB$ $\lambda = \frac{c}{f} = \frac{3 \times 10^8}{12 \times 10^9} = 0.025m$ $Path \ Loss(PL) = -20 \log\left(\frac{\lambda}{4\pi \ d}\right) = -20 \log\left(\frac{0.025}{4\pi \times 39920 \times 10^3}\right) = 206 dB$ $Expected \ P_r = Total \ gain \ - \ Free \ space \ loss$ $= \ 136 \ dB \ - \ 206 \ dB \ = \ -70 \ dBm$ $Link \ Margin = Expected \ P_r \ - \ Sensitivity \ of \ Client$ $= \ -70 \ - \ (-100) = \ 30 \ dB$

Q7/ A- Calculate the link budget (only from Tx to Rx) for the 10km transmitting distance of 20w power that is applied to the transmitter with antenna gain of 20dBi. The receiver is connected to an antenna with 25dBi gain and a receive sensitivity of -80 dBm. The cables in both systems are short, with a loss of 1 dB at each side at the 13 GHz frequency of operation.

B- Label on the following figure the calculated and given parameter on the bellow figure.

Solution:

A)

 $Tx Power = 10 \log(20 \times 10^3 mW) = 43 \, dBm$

 $Total \ gain = Tx \ Power + Tx \ Antenna \ Gain \ - \ Cable \ loss(Tx)$

+ Rx Antenna gain - Cable loss(Rx) = 43 dB + 20 dBi - 1 dB + 25 dBi - 1 dB = 86 dB $\lambda = \frac{c}{f} = \frac{3 \times 10^{8}}{13 \times 10^{9}} = 0.023m$ Path Loss (PL) = $-20 \log \left(\frac{\lambda}{4\pi d}\right) = -20 \log \left(\frac{0.023}{4\pi \times 10000}\right) = 134.7dB$ Expected $P_{r} = Total gain - Free space loss$ = 86 dB - 134.7 dB = -48.7 dBmLink Margin = Expected $P_{r} - Sensitivity of Client$ = -48.7 - (-80) = 31.3 dB

B-

Q8/ Calculate the link budget for the 10km transmitting distance of 20w power that is applied to the transmitter with antenna gain of 20dBi and transmitter sensitivity of -85 dBm. The receiver (Rx = 18w) is connected to an antenna with 25dBi gain and a receive sensitivity of -80 dBm. The cables in both systems are short, with a loss of 1 dB at each side at the 13 GHz frequency of operation.

A) from Tx to Rx

 $Tx Power = 10 \log(20 \times 10^3 mW) = 43 dBm$

 $Total \ gain = Tx \ Power + Tx \ Antenna \ Gain \ - \ Cable \ loss(Tx)$

+ Rx Antenna gain - Cable loss(Rx)

$$= 43 \, dB + 20 \, dBi - 1 \, dB + 25 \, dBi - 1 \, dB = 86 \, dB$$

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{13 \times 10^9} = 0.023m$$

Path Loss (PL) = $-20 \log \left(\frac{\lambda}{4\pi d}\right) = -20 \log \left(\frac{0.023}{4\pi \times 10000}\right) = 134.7 dB$

Expected $P_r = Total gain - Free space loss$ = 86 dB - 134.7 dB = -48.7 dBm Link Margin = Expected P_r - Sensitivity of Client = -48.7 - (-80) = 31.3 dB

b) from Rx TO Tx

 $Total \ gain = Rx \ Power + Rx \ Antenna \ Gain \ - \ Cable \ loss(Rx) \\ + Tx \ Antenna \ gain \ - \ Cable \ loss(Tx) \\ = 42.55 \ dB + 25 \ dBi \ - \ 1 \ dB \ + \ 20 \ dBi \ - \ 1 \ dB \ = \ 85.55 \ dB \\ Expected \ P_r \ = \ Total \ gain \ - \ Free \ space \ loss \\ = \ 85.55 \ dB \ - \ 134.7 \ dB \ = \ -49.14 \ dBm \\ Link \ Margin \ = \ Expected \ P_r \ - \ Sensitivity \ of \ Client$

 $= -49.14 - (-85) = 35.85 \, dB$

Q9\ Find the far-field distance for an antenna with maximum dimension of 3m and operating frequency of 950 *MHz*.

Solution:

$$D = 3m, f = 950 MHz,$$

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{950} = 0.315m$$

$$d_f = \frac{2 \times D^2}{\lambda} = \frac{2 \times 3^2}{0.315} = 57.14m$$

Q10\ Determine the isotropic free space loss at 5GHz for 5 km path distance between the transmitter and the receiver.

Solution:

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{5 \times 10^9} = 0.06m$$

$$PL(dB) = -20 \log\left(\frac{0.06}{4\pi \times 5 \times 10^9}\right) = 60.3 dB$$