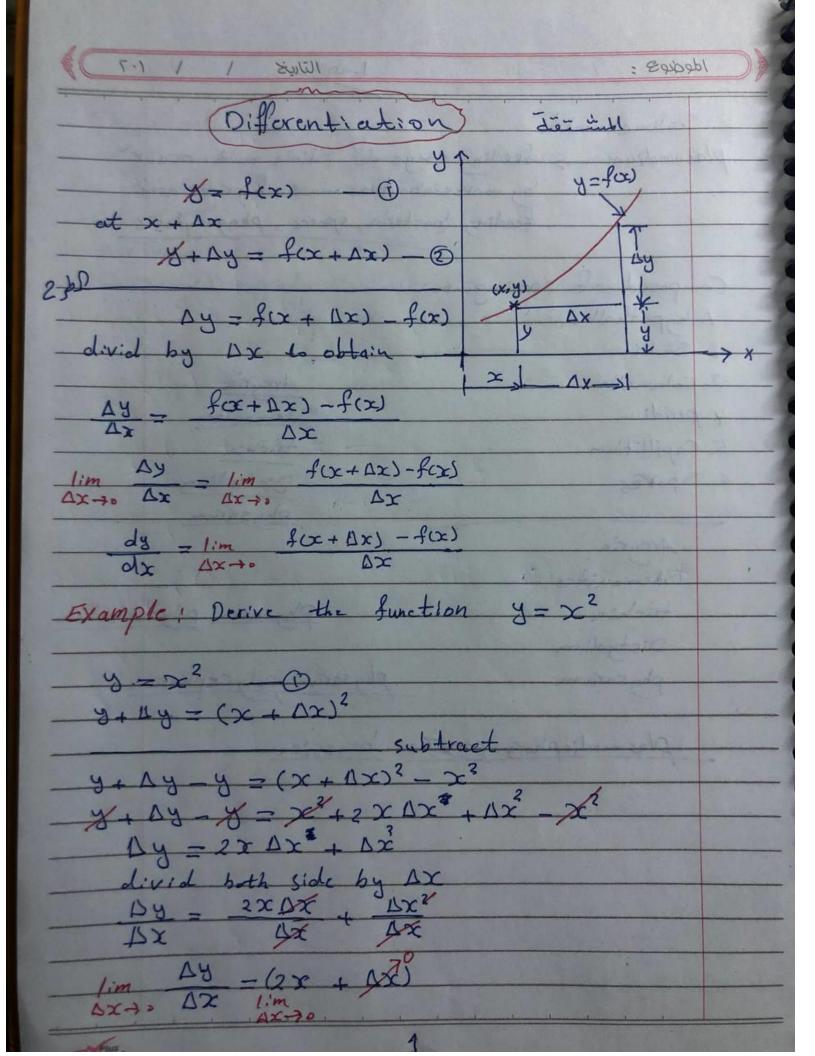
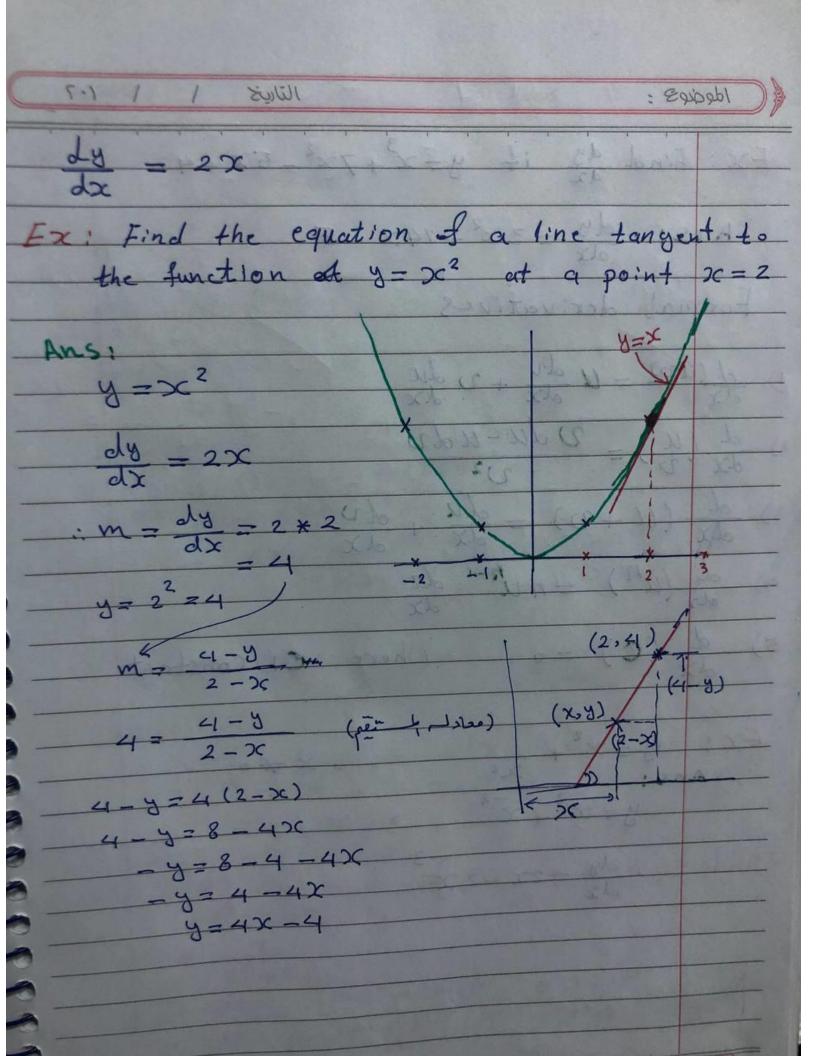
Al-Mustaqbal university
Engineering technical college
Department of Building
&Construction Engineering

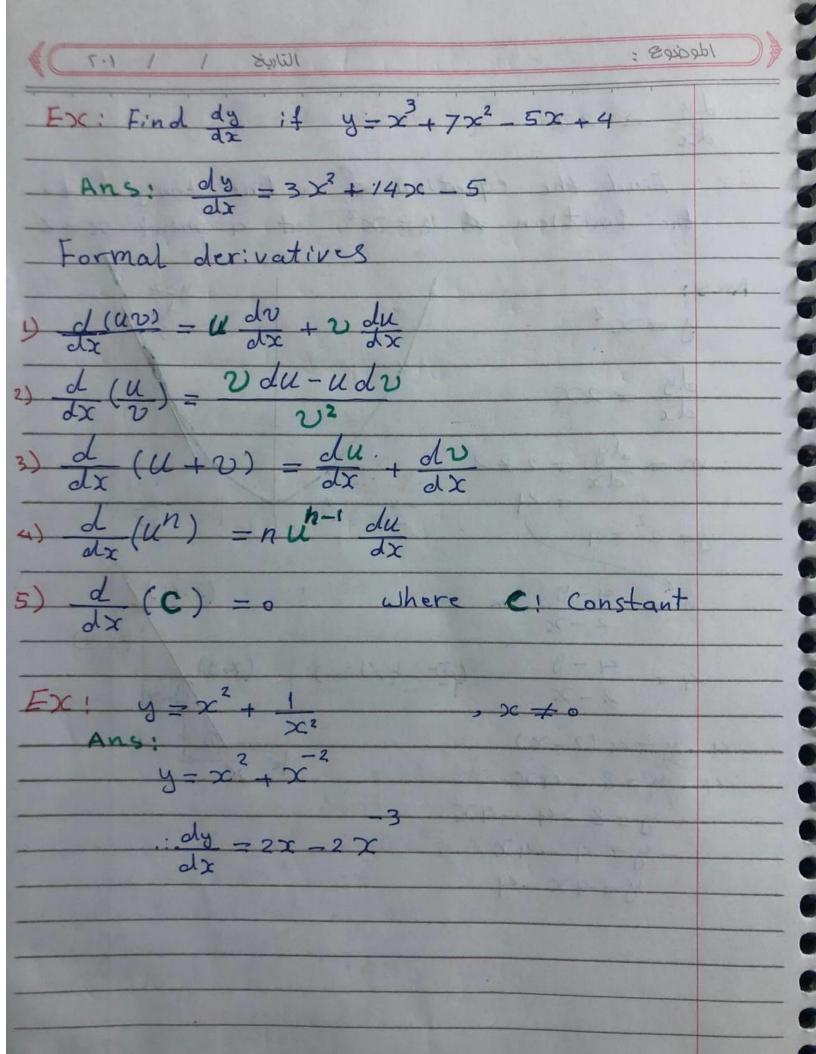
Mathematics
First class
Lecture no.3

Assist. Lecture

Alaa Hussein AbdUlameer







Problems: Find dy

1) y=(x2+1)5

dy = 5(x2+1) * 2x = 10x(x2+1)4

y = 2x + 53x - 2

(3x-2)+2+(2x+5)+3 $(3x-2)^2$

62 - 4 + 850 - 15 = -19 $(3x - 2)^{2}$ $(3x-2)^2$

3) y = (x-1)(x+2)

Ans:

-1) *1 + (X+2) * 1

ds in each of the following problems

 $\frac{ds}{dt} = \frac{(t^2+1)-t*2t}{(t^2+1)^2} = \frac{t^2+1-2t^2}{(t^2+1)} = \frac{(1-t^2)}{(1+t^2)}$

(1) / implicit relations : 2000bl Ex: Find dy if x5+4xy3-3y5=2 d (35) + d (4xy3) + d (35) -d (2) 5x4 dx +4(x x 3y2 dy + y3 dx) - 3x5y4 dy -5x4 + 12xy2 dy +4y3 - 15y4 dy = 0 $5x^{4} + 4y^{3} = (-12xy^{2} + 15y^{4}) dy$ $\frac{dy}{dx} = \frac{5x^4 + 4y^3}{-12xy^2 + 15y^4}$ Ex Find dy for the implicit relation $\chi^2 y + \chi y^2 = 6$ Ans:
2x dxy+x2dy + dx xy2+x x 2y dy = 0 2xy+x2 dy +y2 +2xy dy =0 $2xy + y^3 = -x^3 dy - 2xy dy$ $(2xy + y^2) = -(x^2 + 2xy) \frac{dy}{dx}$ $\frac{1}{2} = \frac{1}{2} \left(\frac{2x^2 + y^2}{2x^2 + 2x^2} \right)$

Exercises 2.6

Derivatives of Rational Powers

Find dy/dx in Exercises 1–10.

1.
$$y = x^{9/4}$$

2.
$$y = x^{-3/5}$$

3.
$$y = \sqrt[3]{2x}$$

4.
$$y = \sqrt[4]{5x}$$

5.
$$y = 7\sqrt{x+6}$$

6.
$$y = -2\sqrt{x-1}$$

7.
$$y = (2x + 5)^{-1/2}$$

8.
$$y = (1-6x)^{2/3}$$

9.
$$y = x(x^2 + 1)^{1/2}$$

10.
$$y = x(x^2 + 1)^{-1/2}$$

Find the first derivatives of the functions in Exercises 11-18.

11.
$$s = \sqrt[3]{t^2}$$

12.
$$r = \sqrt[4]{\theta^{-3}}$$

13.
$$y = \sin[(2t+5)^{-2/3}]$$

14.
$$z = \cos \left[(1 - 6t)^{2/3} \right]$$

15.
$$f(x) = \sqrt{1 - \sqrt{x}}$$

16.
$$g(x) = 2(2x^{-1/2} + 1)^{-1/3}$$

17.
$$h(\theta) = \sqrt[3]{1 + \cos(2\theta)}$$

18.
$$k(\theta) = (\sin{(\theta + 5)})^{5/4}$$

Differentiating Implicitly

Use implicit differentiation to find dy/dx in Exercises 19–32.

19.
$$x^2y + xy^2 = 6$$

20.
$$x^3 + y^3 = 18xy$$

21.
$$2xy + y^2 = x + y$$

22.
$$x^3 - xy + y^3 = 1$$

23.
$$x^2(x-y)^2 = x^2 - y^2$$
 24. $(3xy+7)^2 = 6y$

24.
$$(3xy + 7)^2 = 6y$$

26.
$$x^2 = \frac{x - y}{x + y}$$

27.
$$x = \tan y$$

28.
$$x = \sin y$$

29.
$$x + \tan(xy) = 0$$

30.
$$x + \sin y = xy$$

$$31. \ y \sin\left(\frac{1}{y}\right) = 1 - xy$$

32.
$$y^2 \cos\left(\frac{1}{y}\right) = 2x + 2y$$

Find $dr/d\theta$ in Exercises 33–36.

33.
$$\theta^{1/2} + r^{1/2} = 1$$

34.
$$r - 2\sqrt{\theta} = \frac{3}{2}\theta^{2/3} + \frac{4}{3}\theta^{3/4}$$

35.
$$\sin{(r\theta)} = \frac{1}{2}$$

36.
$$\cos r + \cos \theta = r\theta$$

Higher Derivatives

In Exercises 37-42, use implicit differentiation to find dy/dx and then d^2y/dx^2 .

37.
$$x^2 + y^2 = 1$$

38.
$$x^{2/3} + y^{2/3} = 1$$

39.
$$y^2 = x^2 + 2x$$

40.
$$y^2 - 2x = 1 - 2y$$

41.
$$2\sqrt{y} = x - y$$

42.
$$xy + y^2 = 1$$

43. If
$$x^3 + y^3 = 16$$
, find the value of d^2y/dx^2 at the point (2, 2).

44. If
$$xy + y^2 = 1$$
, find the value of d^2y/dx^2 at the point $(0, -1)$.

Slopes, Tangents, and Normals

In Exercises 45 and 46, find the slope of the curve at the given points.

45.
$$y^2 + x^2 = y^4 - 2x$$
 at $(-2, 1)$ and $(-2, -1)$

46.
$$(x^2 + y^2)^2 = (x - y)^2$$
 at $(1, 0)$ and $(1, -1)$

In Exercises 47-56, verify that the given point is on the curve and find the lines that are (a) tangent and (b) normal to the curve at the given point.

47.
$$x^2 + xy - y^2 = 1$$
, (2, 3)

48.
$$x^2 + y^2 = 25$$
, $(3, -4)$

49.
$$x^2y^2 = 9$$
, $(-1, 3)$

50.
$$v^2 - 2x - 4v - 1 = 0$$
, $(-2, 1)$

51.
$$6x^2 + 3xy + 2y^2 + 17y - 6 = 0$$
. $(-1, 0)$

52.
$$x^2 - \sqrt{3}xy + 2y^2 = 5$$
, $(\sqrt{3}, 2)$

53.
$$2xy + \pi \sin y = 2\pi$$
, $(1, \pi/2)$

54.
$$x \sin 2y = y \cos 2x$$
, $(\pi/4, \pi/2)$

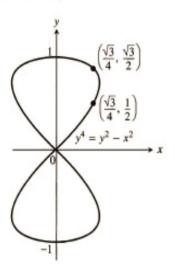
55.
$$y = 2\sin(\pi x - y)$$
, (1.0)

56.
$$x^2 \cos^2 y - \sin y = 0$$
, $(0, \pi)$

57. Find the two points where the curve $x^2 + xy + y^2 = 7$ crosses the x-axis, and show that the tangents to the curve at these points are parallel. What is the common slope of these tangents?

58. Find points on the curve $x^2 + xy + y^2 = 7$ (a) where the tangent is parallel to the x-axis and (b) where the tangent is parallel to the y-axis. In the latter case, dy/dx is not defined, but dx/dy is. What value does dx/dy have at these points?

59. The eight curve. Find the slopes of the curve $y^4 = y^2 - x^2$ at the two points shown here.



Al-Mustaqbal university
Engineering technical college
Department of Building
&Construction Engineering

Mathematics
First class
Lecture No.5

Assist. Lecture

Alaa Hussein AbdUlameer

Lecture Five

Chain Rule:

The chain rule is used to differentiate the composite functions.

1. Chain rule for function of single variable defined along paths.

$$\lambda = L[x(f)]$$

$$\lambda = \chi(f) \implies \frac{df}{dx} = \frac{dx}{dx} * \frac{df}{dx}$$

$$\lambda = \chi(f) \implies \frac{df}{dx} = \frac{dx}{dx} * \frac{df}{dx}$$

Ex: if
$$\lambda = x_{+1}$$
, $\lambda = +av_{+}$ find $\frac{q+}{q+}$ 5

Sol:
$$\frac{dy}{dx} = 2x$$

$$\frac{qt}{qx} = \frac{1+fs}{1}$$

$$\frac{dt}{dx} = \frac{dx}{dx} \cdot \frac{dt}{dx}$$

$$= 2x \cdot \frac{1}{1+t^2} = 2 + an^2 t * \frac{1}{1+t^2}$$

2. For the function Z = f(x,y) of two variable defined along path.

$$\frac{gt}{gt} = \frac{gx}{gt} \cdot \frac{gt}{gx} + \frac{gt}{gt} + \frac{gt}{gs}$$

Ex:
$$Z = f(x,y) = X^2y^3$$
, $X = cost$, $y = Sint find $\frac{df}{dt}$?$

501:

$$\frac{dt}{dt} = \frac{dx}{dx} \cdot \frac{dx}{dx} + \frac{dy}{dy} \cdot \frac{dy}{dt}$$

$$fx = y^3 2x = 2xy^3$$

$$\frac{dy}{dt} = \cos t$$
, $\frac{dx}{dt} = -\sin t$

$$\frac{df}{dt} = 2xy^3(-sint) + 3y^2x^2(cost)$$

$$= -2 (ost (sint)^4 + 3 (sint)^2 (cost)^3$$

$$\frac{dt}{dt} = \frac{dx'}{dt} \cdot \frac{dt}{dx'} + \frac{dx}{dt} \cdot \frac{dt}{dx^2} + - + \frac{dx}{dt} \cdot \frac{dt}{dx^n}$$

$$\frac{df}{dt} = \frac{dx}{dx} \cdot \frac{dx}{dt} + \frac{dx}{dt} \cdot \frac{dx}{dt} + \frac{dx}{dt} \cdot \frac{dx}{dt}$$

$$\frac{dx}{dt} = -\sin t$$

$$\frac{dt}{dy} = \cos t$$

$$\frac{dz}{dt} = 2t$$

$$\frac{dw}{dt} = 3 \sin 2 \left(-\sin t\right) + X \sin 2 \left(\cos t\right) + Xy \cos 2 \left(2t\right)$$

$$= 3 \sin(1+t^2)(-\sin t) + (\cos t \sin(1+t^2) \times + (\cos t \sin t) \cos(1+t^2)$$
(2+)

4. Chain rule for function of two variable defined on surface:

$$\frac{3L}{35} = \frac{9L}{9b} = \frac{9X}{3b} \cdot \frac{9L}{9X} + \frac{9L}{9b} \cdot \frac{9L}{3b}$$

$$\frac{92}{95} = \frac{92}{95} = \frac{92}{95} \cdot \frac{92}{92} + \frac{92}{95} \cdot \frac{92}{95}$$

$$X = x + e^{s}$$
, $A = |us|$ $S = f(x, y) = x^{2} + y^{2}$
 $X = x + e^{s}$, $Y = |us|$ $Y = x^{2} + y^{2}$

$$\frac{9L}{95} = \frac{9X}{95} \cdot \frac{9L}{9X} + \frac{9A}{95} \cdot \frac{9L}{9A}$$

$$fx = 2x$$
 , $\frac{\partial x}{\partial y} = 1$, $\frac{\partial y}{\partial y} = 0$

$$fy = 2y$$
, $\frac{\partial x}{\partial s} = e^{s}$, $\frac{\partial y}{\partial s} = \frac{1}{s}$

$$\frac{\partial^2}{\partial r} = 2X(1) + 2y(0) = 2X = 2(r+e^2)$$

$$\frac{92}{95} = \frac{9x}{95} \cdot \frac{92}{9x} + \frac{92}{95} \cdot \frac{92}{93}$$

$$= 2 \times e^{5} + 2y (1/s)$$

$$= 2 (r+e^{5}) \cdot e^{5} + 2 (1/s) \cdot \frac{1}{s}$$

$$= 2 \cdot e^{5} + 2 \cdot e^{2s} + \frac{2}{5} \cdot \ln s$$

Ex: If Z is a differentiable function of X and y which satisfy the equation $X^3 + y^3 + Z^3 + 3x^2 \sin y \tan Z = 5$?

Find $\frac{\partial Z}{\partial X}$, $\frac{\partial Z}{\partial y}$?

$$3 \times^{2} + 0 + 3 \times^{2} \frac{\partial^{2}}{\partial x} + 3 \sin y \left(x^{2} \sec^{2} \frac{\partial^{2}}{\partial x} + 4 \cos \frac{\pi}{2} x^{2} \right) = 0$$

$$3 \times^{2} + 3 \times^{2} \frac{\partial^{2}}{\partial x} + 3 \times^{2} \sin y \sec^{2} \frac{\partial^{2}}{\partial x} + 6 \times \sin y \tan^{2} = 0$$

$$3 \times^{2} \sin y \sec^{2} \frac{\partial^{2}}{\partial x} + 3 \times^{2} \frac{\partial^{2}}{\partial x} = -3 \times^{2} - 6 \times \sin y \tan^{2} = 0$$

$$\frac{\partial^{2}}{\partial x} \left(3 \times^{2} \sin y \sec^{2} \frac{\partial^{2}}{\partial x} + 3 \times^{2} \right) = -3 \times^{2} - 6 \times \sin y \tan^{2} = 0$$

$$\frac{\partial^{2}}{\partial x} \left(3 \times^{2} \sin y \sec^{2} \frac{\partial^{2}}{\partial x} + 3 \times^{2} \right) = -3 \times^{2} - 6 \times \sin y \tan^{2} = 0$$

$$\frac{\partial Z}{\partial x} = \frac{-3 x^2 - 6x \sin y \tan Z}{3x^2 \sin y \sec^2 Z + 3Z^2}$$

$$\frac{3y^{2} + 3z^{2} \frac{\partial z}{\partial y} + 3x^{2} (\text{Siny Sec}^{2}z \frac{\partial z}{\partial y} + \text{fan}z (\text{osy} = 0)}{3y^{2} + 3z^{2} \frac{\partial z}{\partial y} + 3x^{2} \text{Siny Sec}^{2}z \frac{\partial z}{\partial y} + 3x^{2} \text{fan}z (\text{osy} = 0)}$$

$$\frac{3z^{2} \frac{\partial z}{\partial y} + 3x^{2} \text{Siny Sec}^{2}z \frac{\partial z}{\partial y} = -3y^{2} - 3x^{2} \text{fan}z (\text{osy})$$

$$\frac{\partial z}{\partial y} (3z^{2} + 3x^{2} \text{Siny Sec}^{2}z) = -3y^{2} - 3x^{2} \text{fan}z (\text{osy})$$

$$\frac{\partial z}{\partial y} = \frac{-3y^{2} - 3x^{2} \text{fan}z (\text{osy})}{3z^{2} + 3x^{2} \text{siny Sec}^{2}z}$$

5. Chain rule for function of three variables defined on Surface:
1 f = f(x, y, Z) has partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ and if X = X(r,s), Z = Z(r,s)also have partial derivatives

$$\frac{9L}{9m} = \frac{9L}{9f} = \frac{9X}{9f} \cdot \frac{9L}{9X} + \frac{9A}{9f} \cdot \frac{9L}{9A} + \frac{95}{9f} \cdot \frac{9L}{95}$$

$$\frac{9z}{9m} = \frac{9z}{9b} = \frac{9x}{9b} \cdot \frac{9x}{9x} + \frac{92}{9b} \cdot \frac{9z}{9a} + \frac{9z}{9b} \cdot \frac{9z}{95}$$

$$= \frac{1}{5} + 4r + 4(2r) = \frac{1}{5} + 12r$$

Al-Mustaqbal university
Engineering technical college
Department of Building
&Construction Engineering

Mathematics
First class
Lecture No.6

Assist. Lecture

Alaa Hussein AbdUlameer

Higher order partial derivative:

- 2 nd Order partial derivative for functions with two variable F(x,y) has partial derivative $F_x = \frac{\partial F}{\partial x}$ and $F_y = \frac{\partial F}{\partial y}$.
- . The 2 nd order partial derivative are denoted by:

$$t^{xx} = \frac{9^{x}r}{3t} = \frac{9^{x}}{9}\left(\frac{9^{x}}{9t}\right) = \frac{9^{x}}{9t^{x}}$$

$$t^{22} = \frac{92}{9t} = \frac{92}{9} \left(\frac{92}{9t}\right) = \frac{92}{9t^2}$$

$$fx\lambda = \frac{9\lambda yx}{85L} = \frac{9\lambda}{9} \left(\frac{9x}{9L}\right) = \frac{9\lambda}{9Lx}$$

$$t^{\lambda x} = \frac{9x9\lambda}{95t} = \frac{9x}{9}(\frac{9\lambda}{9t}) = \frac{9x}{9t^{\lambda}}$$

Ex: let F(x,y) = x cosy + y ex find fxx, Fyy, Fxy, Fyx?

Sol:

$$1 - f \times x = cosy * 1 + ye^{x} * 1$$

 $= cosy + ye^{x}$
 $= 0 + ye^{x} * 1 = ye^{x}$

$$2 - fyy = X (-siny) + e^{X} + 1$$

$$= -X siny + e^{X}$$

$$= -X cosy + 0$$

$$= -X cosy$$

$$3- fxy = (osy + ye^{x})$$

$$= -siny + e^{x}$$

$$= -siny + e^{x}$$

$$4-fyx = -x \sin y + e^{x}$$

$$= -\sin y (1) + e^{x} (1)$$

$$= -\sin y + e^{x}$$

• Consider the 3rd order partial derivative of the function Z = f(x,y).

$$\frac{9x_s}{3t} = \frac{9x}{9} \left(\frac{9x_s}{s_t^{2} t^{x}} \right) = \frac{9x}{9t^{2} t^{x}} = t^{2} t^{2}$$
 Similarità

$$\frac{9\lambda 9X_{5}}{3t} = \frac{9\lambda}{3} \left(\frac{9X_{5}}{9st} \right) = \frac{9\lambda}{9e^{XX}} = e^{XX}\lambda$$

Ex: f(x,y) = x cosy + y ex find fxxx, fyyy, fxxy, fyyx?

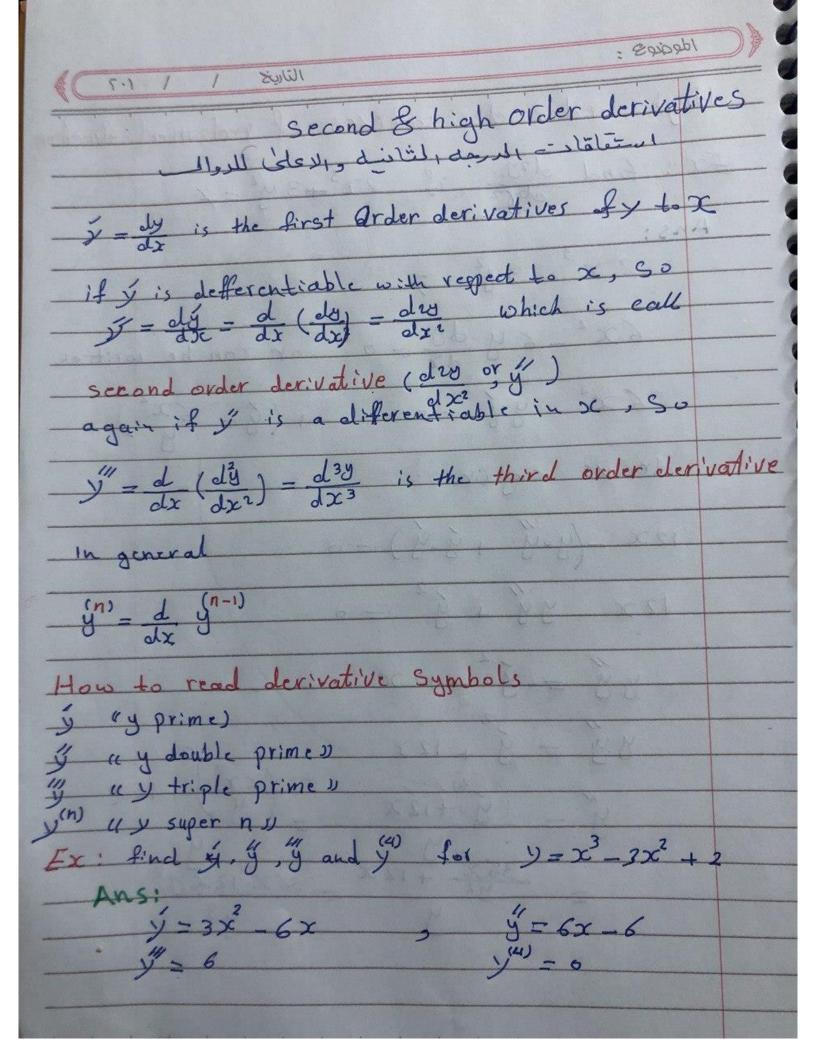
Sol:
$$f_{xxx} = (osy*1 + ye^{x}*1$$

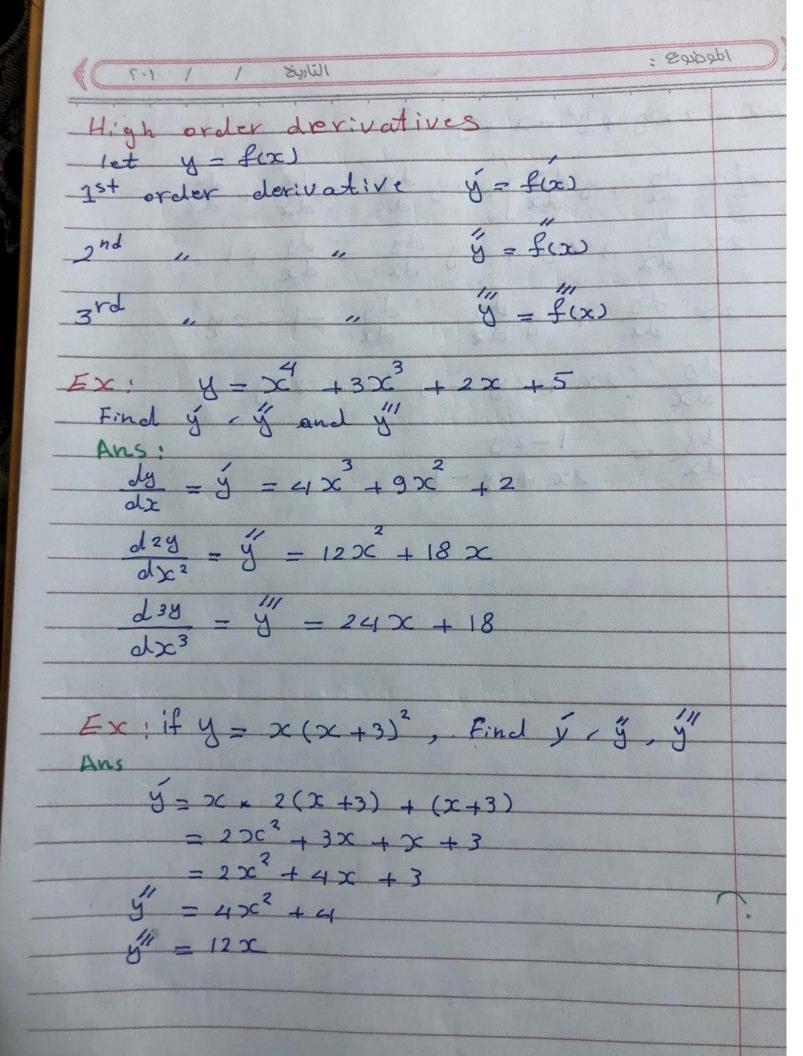
= $cosy + ye^{x}$
= $o + y*e^{x}*1 = ye^{x}$

$$fyyy = x (-siny) + e^{x} *1$$

$$= -x siny + e^{x} = -x cosy +0$$

$$= -x cosy = -x (-siny) = x siny$$





High order derivatives of rodional function Find dry if 2x3 +3 y2 = 7 Ans: 6x2-6ydy-0 or can be written 122 - (4 × 4 + 4 × 4) = 0 + 12 x = 36 x 12 x y 2

0

Exercises 2.6

Derivatives of Rational Powers

Find dy/dx in Exercises 1–10.

1.
$$y = x^{9/4}$$

2.
$$y = x^{-3/5}$$

3.
$$y = \sqrt[3]{2x}$$

4.
$$y = \sqrt[4]{5x}$$

5.
$$y = 7\sqrt{x+6}$$

6.
$$y = -2\sqrt{x-1}$$

7.
$$y = (2x + 5)^{-1/2}$$

8.
$$y = (1 - 6x)^{2/3}$$

$$y = (2x + 3)^{-1}$$

$$0. y = (1 - 0.0)$$

9.
$$y = x(x^2 + 1)^{1/2}$$

10.
$$y = x(x^2 + 1)^{-1/2}$$

Find the first derivatives of the functions in Exercises 11-18.

11.
$$s = \sqrt[3]{t^2}$$

12.
$$r = \sqrt[4]{\theta^{-3}}$$

13.
$$y = \sin[(2t+5)^{-2/3}]$$

14.
$$z = \cos \left[(1 - 6t)^{2/3} \right]$$

15.
$$f(x) = \sqrt{1 - \sqrt{x}}$$

16.
$$g(x) = 2(2x^{-1/2} + 1)^{-1/3}$$

17.
$$h(\theta) = \sqrt{1 + \cos(2\theta)}$$

18.
$$k(\theta) = (\sin{(\theta + 5)})^{5/4}$$

Differentiating Implicitly

Use implicit differentiation to find dy/dx in Exercises 19-32.

$$19. x^2y + xy^2 = 6$$

20.
$$x^3 + y^3 = 18xy$$

21.
$$2xy + y^2 = x + y$$

22.
$$x^3 - xy + y^3 = 1$$

23.
$$x^2(x-y)^2 = x^2 - y^2$$

24.
$$(3xy + 7)^2 = 6y$$

25.
$$y^2 = \frac{x-1}{x+1}$$

26.
$$x^2 = \frac{x - y}{x + y}$$

27.
$$x = \tan y$$

28.
$$x = \sin y$$

29.
$$x + \tan(xy) = 0$$

30.
$$x + \sin y = xy$$

31.
$$y \sin\left(\frac{1}{y}\right) = 1 - xy$$

$$32. \ y^2 \cos\left(\frac{1}{y}\right) = 2x + 2y$$

Find $dr/d\theta$ in Exercises 33-36.

33.
$$\theta^{1/2} + r^{1/2} = 1$$

34.
$$r - 2\sqrt{\theta} = \frac{3}{2}\theta^{2/3} + \frac{4}{3}\theta^{3/4}$$

$$35. \sin{(r\theta)} = \frac{1}{2}$$

$$36. \cos r + \cos \theta = r\theta$$

Higher Derivatives

In Exercises 37–42, use implicit differentiation to find dy/dx and then d^2y/dx^2 .

37.
$$x^2 + y^2 = 1$$

38.
$$x^{2/3} + y^{2/3} = 1$$

39.
$$y^2 = x^2 + 2x$$

40.
$$y^2 - 2x = 1 - 2y$$

41.
$$2\sqrt{y} = x - y$$

42.
$$xy + y^2 = 1$$

43. If
$$x^3 + y^3 = 16$$
, find the value of d^2y/dx^2 at the point (2, 2).

44. If
$$xy + y^2 = 1$$
, find the value of d^2y/dx^2 at the point $(0, -1)$.

Slopes, Tangents, and Normals

In Exercises 45 and 46, find the slope of the curve at the given points.

45.
$$y^2 + x^2 = y^4 - 2x$$
 at $(-2, 1)$ and $(-2, -1)$

46.
$$(x^2 + y^2)^2 = (x - y)^2$$
 at $(1, 0)$ and $(1, -1)$

In Exercises 47-56, verify that the given point is on the curve and find the lines that are (a) tangent and (b) normal to the curve at the given point.

47.
$$x^2 + xy - y^2 = 1$$
, (2, 3)

48.
$$x^2 + y^2 = 25$$
, $(3, -4)$

49.
$$x^2y^2 = 9$$
, $(-1, 3)$

51.
$$6x^2 + 3xy + 2y^2 + 17y - 6 = 0$$
, $(-1, 0)$

52.
$$x^2 - \sqrt{3}xy + 2y^2 = 5$$
, $(\sqrt{3}, 2)$

53.
$$2xy + \pi \sin y = 2\pi$$
, $(1, \pi/2)$

54.
$$x \sin 2y = y \cos 2x$$
, $(\pi/4, \pi/2)$

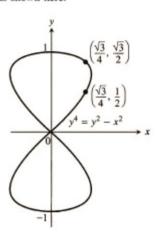
55.
$$y = 2\sin(\pi x - y)$$
, (1,0)

56.
$$x^2 \cos^2 y - \sin y = 0$$
, $(0, \pi)$

57. Find the two points where the curve $x^2 + xy + y^2 = 7$ crosses the x-axis, and show that the tangents to the curve at these points are parallel. What is the common slope of these tangents?

58. Find points on the curve $x^2 + xy + y^2 = 7$ (a) where the tangent is parallel to the x-axis and (b) where the tangent is parallel to the y-axis. In the latter case, dy/dx is not defined, but dx/dy is. What value does dx/dy have at these points?

59. The eight curve. Find the slopes of the curve $y^4 = y^2 - x^2$ at the two points shown here.



Solve all

How to read the symbols for derivatives

$$d^2y$$
 ...

$$\frac{d^n y}{dx^n}$$
 "d to the n of y by dx to the n"

The first four derivatives of $y = x^3 - 3x^2 + 2$ are EXAMPLE 13

$$y' = 3x^2 - 6x$$

$$y'' = 6x - 6$$

$$y''' = 6$$

$$y'' = 0$$

Fourth derivative:

$$y^{(4)} = 0$$

The function has derivatives of all orders, the fifth and later derivatives all being zero.

Solve as much as you can

Exercises 2.2

Derivative Calculations

In Exercises 1-12, find the first and second derivatives.

1.
$$y = -x^2 + 3$$

2.
$$y = x^2 + x + 8$$

3.
$$s = 5t^3 - 3t^5$$

4.
$$w = 3z^7 - 7z^3 + 21z^2$$

5.
$$y = \frac{4x^3}{3} - x$$

6.
$$y = \frac{x^3}{3} + \frac{x^2}{2} + \frac{x}{4}$$

7.
$$w = 3z^{-2} - \frac{1}{z}$$

8.
$$s = -2t^{-1} + \frac{4}{t^2}$$

9.
$$y = 6x^2 - 10x - 5x^{-2}$$
 10. $y = 4 - 2x - x^{-3}$

10.
$$y = 4 - 2x - x^{-3}$$

11.
$$r = \frac{1}{3s^2} - \frac{5}{2s}$$

12.
$$r = \frac{12}{\theta} - \frac{4}{\theta^3} + \frac{1}{\theta^4}$$

In Exercises 13-16, find y' (a) by applying the Product Rule and (b) by multiplying the factors to produce a sum of simpler terms to differentiate.

13.
$$y = (3 - x^2)(x^3 - x + 1)$$

14.
$$y = (x - 1)(x^2 + x + 1)$$

15.
$$y = (x^2 + 1)\left(x + 5 + \frac{1}{x}\right)$$

15.
$$y = (x^2 + 1)\left(x + 5 + \frac{1}{x}\right)$$
 16. $y = \left(x + \frac{1}{x}\right)\left(x - \frac{1}{x} + 1\right)$

Find the derivatives of the functions in Exercises 17-28.

17.
$$y = \frac{2x+5}{3x-2}$$

18.
$$z = \frac{2x+1}{x^2-1}$$

19.
$$g(x) = \frac{x^2 - 4}{x + 0.5}$$

20.
$$f(t) = \frac{t^2 - 1}{t^2 + t - 2}$$

21.
$$v = (1-t)(1+t^2)^{-1}$$

22.
$$w = (2x - 7)^{-1}(x + 5)$$

23.
$$f(s) = \frac{\sqrt{s}-1}{\sqrt{s}+1}$$

24.
$$u = \frac{5x+1}{2\sqrt{x}}$$

25.
$$v = \frac{1 + x - 4\sqrt{x}}{x}$$

26.
$$r = 2\left(\frac{1}{\sqrt{\theta}} + \sqrt{\theta}\right)$$

27.
$$y = \frac{1}{(x^2 - 1)(x^2 + x + 1)}$$
 28. $y = \frac{(x+1)(x+2)}{(x-1)(x-2)}$

28.
$$y = \frac{(x+1)(x+2)}{(x-1)(x-2)}$$

Find the derivatives of all orders of the functions in Exercises 29 and

29.
$$y = \frac{x^4}{2} - \frac{3}{2}x^2 - x$$
 30. $y = \frac{x^5}{120}$

30.
$$y = \frac{x^5}{120}$$

Find the first and second derivatives of the functions in Exercises 31 - 38.

31.
$$y = \frac{x^3 + 7}{x}$$

32.
$$s = \frac{t^2 + 5t - 1}{t^2}$$

33.
$$r = \frac{(\theta - 1)(\theta^2 + \theta + 1)}{\theta^3}$$
 34. $u = \frac{(x^2 + x)(x^2 - x + 1)}{x^4}$

34.
$$u = \frac{(x^2 + x)(x^2 - x + 1)}{x^4}$$

35.
$$w = \left(\frac{1+3z}{3z}\right)(3-z)$$
 36. $w = (z+1)(z-1)(z^2+1)$

36.
$$w = (z+1)(z-1)(z^2+1)$$

37.
$$p = \left(\frac{q^2 + 3}{12q}\right) \left(\frac{q^4 - 1}{q^3}\right)$$
 38. $p = \frac{q^2 + 3}{(q - 1)^3 + (q + 1)^3}$

38.
$$p = \frac{q^2 + 3}{(q-1)^3 + (q+1)^3}$$

Using Numerical Values

39. Suppose u and v are functions of x that are differentiable at x = 0 and that

$$u(0) = 5$$
, $u'(0) = -3$, $v(0) = -1$, $v'(0) = 2$.

Find the values of the following derivatives at x = 0.

a)
$$\frac{d}{dx}(uv)$$

b)
$$\frac{d}{dx}$$

a)
$$\frac{d}{dx}(uv)$$
 b) $\frac{d}{dx}(\frac{u}{v})$ c) $\frac{d}{dx}(\frac{v}{u})$ d) $\frac{d}{dx}(7v-2u)$

40. Suppose u and v are differentiable functions of x and that

$$u(1)=2, \quad u'(1)=0, \quad v(1)=5, \quad v'(1)=-1.$$

Find the values of the following derivatives at x = 1.

a)
$$\frac{d}{dx}(uv)$$

b)
$$\frac{d}{dx} \left(\frac{u}{v} \right)$$

c)
$$\frac{d}{dx} \left(\frac{v}{u} \right)$$

a)
$$\frac{d}{dx}(uv)$$
 b) $\frac{d}{dx}(\frac{u}{v})$ c) $\frac{d}{dx}(\frac{v}{u})$ d) $\frac{d}{dx}(7v-2u)$

Section 2.2, pp. 129-131

1.
$$\frac{dy}{dx} = -2x$$
, $\frac{d^2y}{dx^2} = -2$

3.
$$\frac{ds}{dt} = 15t^2 - 15t^4$$
, $\frac{d^2s}{dt^2} = 30t - 60t^3$

5.
$$\frac{dy}{dx} = 4x^2 - 1$$
, $\frac{d^2y}{dx^2} = 8x$

7.
$$\frac{dw}{dz} = -6z^{-3} + \frac{1}{z^2}$$
, $\frac{d^2w}{dz^2} = 18z^{-4} - \frac{2}{z^3}$

9.
$$\frac{dy}{dx} = 12x - 10 + 10x^{-3}, \quad \frac{d^2y}{dx^2} = 12 - 30x^{-4}$$

11.
$$\frac{dr}{ds} = \frac{-2}{3s^3} + \frac{5}{2s^2}$$
, $\frac{d^2r}{ds^2} = \frac{2}{s^4} - \frac{5}{s^3}$

13.
$$y' = -5x^4 + 12x^2 - 2x - 3$$
 15. $y' = 3x^2 + 10x + 2 - \frac{1}{x^2}$

17.
$$y' = \frac{-19}{(3x-2)^2}$$
 19. $g'(x) = \frac{x^2+x+4}{(x+0.5)^2}$

21.
$$\frac{dv}{dt} = \frac{t^2 - 2t - 1}{(1 + t^2)^2}$$
 23. $f'(s) = \frac{1}{\sqrt{s}(\sqrt{s} + 1)^2}$

25.
$$v' = -\frac{1}{x^2} + 2x^{-3/2}$$
 27. $y' = \frac{-4x^3 - 3x^2 + 1}{(x^2 - 1)^2(x^2 + x + 1)^2}$ **29.** $y' = 2x^3 - 3x - 1$, $y'' = 6x^2 - 3$, $y''' = 12x$, $y^{(4)} = 12$,

29.
$$y' = 2x^3 - 3x - 1$$
, $y'' = 6x^2 - 3$, $y''' = 12x$, $y^{(4)} = 12$

31.
$$y' = 2x - 7x^{-2}$$
, $y'' = 2 + 14x^{-3}$

33.
$$\frac{dr}{d\theta} = 3\theta^{-4}$$
, $\frac{d^2r}{d\theta^2} = -12\theta^{-5}$

35.
$$\frac{dw}{dz} = -z^{-2} - 1$$
, $\frac{d^2w}{dz^2} = 2z^{-3}$

37.
$$\frac{dp}{dq} = \frac{1}{6}q + \frac{1}{6}q^{-3} + q^{-5}, \quad \frac{d^2p}{dq^2} = \frac{1}{6} - \frac{1}{2}q^{-4} - 5q^{-6}$$

39. a) 13 b) -7 c) 7/25 d) 20 **41.** a)
$$y = -\frac{x}{8} + \frac{5}{4}$$

b)
$$m = -4$$
 at $(0, 1)$ c) $y = 8x - 15$, $y = 8x + 17$

b)
$$m = -4$$
 at $(0, 1)$ c) $y = 8x - 15$, $y = 8x + 17$
43. $y = 4x$, $y = 2$ 45. $a = 1$, $b = 1$, $c = 0$ 47. a) $y = 2x + 2$,

c) (2,6) **49.**
$$\frac{dP}{dV} = -\frac{nRT}{(V-nb)^2} + \frac{2an^2}{V^3}$$

51. The Product Rule is then the Constant Multiple Rule, so the latter is a special case of the Product Rule.

55. a)
$$\frac{3}{2}x^{1/2}$$
, b) $\frac{5}{2}x^{3/2}$, c) $\frac{7}{2}x^{5/2}$, d) $\frac{d}{dx}(x^{n/2}) = \frac{n}{2}x^{(n/2)-1}$