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ROUTH’S STABILITY CRITERION

Consider a closed-loop transfer function

m m—1 .
H(S) _ b[)S + bls + + bm_ls + bm _ B(S) (1)

aps" + a1 4+ -+ a,_15 + ay, A(s)

where the a;’s and b;’s are real constants and m < n. An alternative to factoring the
denominator polynomial, Routh’s stability criterion, determines the number of closed-
loop poles in the right-half s plane.

Algorithm for applying Routh’s stability criterion

The algorithm described below, like the stability criterion, requires the order of A(s) to
be finite.

1. Factor out any roots at the origin to obtain the polynomial, and multiply by —1 if
necessary, to obtain

aps" +ars" - an15+a, =0 (2)
where ag # 0 and a,, > 0.

2. If the order of the resulting polynomial is at least two and any coefficient a; is zero
or negative, the polynomial has at least one root with nonnegative real part. To
obtain the precise number of roots with nonnegative real part, proceed as follows.
Arrange the coefficients of the polynomial, and values subsequently calculated from
them as shown below:

S ag Qs QA4 GAg

S a; a3 as arg

s"2 by by b3 by

S

S

n—3 c1 Co €3 Cq -
mdy dy dy ody - (3)
52 €1 es
st fi
s° do
where the coeflicients b; are
a1ao — apas
by = P (4)
1
a1y — Gods
by = S1%4 ™ 2055 (5)

a1
a1G6 — Qoay

by = ———— (6)

a1
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generated until all subsequent coefficients are zero. Similarly, cross multiply the
cocfficients of the two previous rows to obtain the ¢;, d;, etc.

biaz — aib
¢ = 1a3b 109 (7)
1
b1a5 — a1b3
- ] 8
¢ b (8)
0y = b1a7b—a1b4 (9)
1
4, = c1by — bicy (10)
C1
dy — c1b3 — bicy (11)
C1

until the nth row of the array has been completed! Missing coefficients are replaced
by zeros. The resulting array is called the Routh array. The powers of s are not
considered to be part of the array. We can think of them as labels. The column
beginning with ag is considered to be the first column of the array.

The Routh array is seen to be triangular. It can be shown that multiplying a row
by a positive number to simplify the calculation of the next row does not affect the
outcome of the application of the Routh criterion.

3. Count the number of sign changes in the first column of the array. It can be shown
that a necessary and sufficient condition for all roots of (2) to be located in the
left-half plane is that all the a; are positive and all of the coeflicients in the first
column be positive.

Example: Generic Quadratic Polynomial.
Consider the quadratic polynomial:
aps® +ars +as =0 (12)

where all the a; are positive. The array of coefficients becomes

52 ap as
5’1 a1 0 (13)
SO (05}

IThere is one important detail that we have not yet mentioned. If an clement of the first column
becomes zero, we must alter the procedure. Since this altered procedure is requires some explanation, we
postpone discussion of it to a pair of subsections below.
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where the coefficient a; is the result of multiplying a; by as and subtracting ag(0) then
dividing the result by a,. In the case of a second order polynomial, we see that Routh’s
stability criterion reduces to the condition that all a; be positive.

Example: Generic Cubic Polynomial.

Consider the generic cubic polynomial:
aps® + a15> + ass +as =0 (14)

where all the a; are positive. The Routh array is

3

S ap asg
2
S aq as
Sl ala2—apag (15)
al
SO as

so the condition that all roots have negative real parts is

ai1as > apds. (16)

Example: A Quartic Polynomial.

Next we consider the fourth-order polynomial:
s* +25° 4357 + 45+ 5=0. (17)

Here we illustrate the fact that multiplying a row by a positive constant does not change
the result. One possible Routh array is given at left, and an alternative is given at right,

s 135 | s 135

3240 s3 2 A P Divide this row by two to get
1 2 0

s2 15 s2 15

st —6 st =3

9 5 9 5

In this example, the sign changes twice in the first column so the polynomial equation
A(s) = 0 has two roots with positive real parts.

Necessity of all coefficients being positive.

In stating the algorithm above, we did not justify the stated conditions. Here we show
that all coefficients being positive is necessary for all roots to be located in the left half-
plane. It can be shown that any polynomial in s, all of whose coefficients are real, can
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be factored into a product of a maximal number linear and quadratic factors also having
real coefficients. Clearly a linear factor (s + a) has nonnegative real root iff a is positive.
For both roots of a quadratic factor (s* + bs + ¢) to have negative real parts both b and
¢ must be positive. (If ¢ is negative, the square root of b — 4c is real and the quadratic
factor can be factored into two linear factors so the number of factors was not maximal.)
It is easy to see that if all coefficients of the factors are positive, those of the original
polynomial must be as well. To see that the condition is not sufficient, we can refer to
several examples above.

Example: Determining Acceptable Gain Values

So far we have discussed only one possible application of the Routh criterion, namely
determining the number of roots with nonnegative real parts. In fact, it can be used to
determine limits on design parameters, as shown below.

Consider a system whose closed-loop transfer function is
K

H(s) = . 1
(s) s(s2+s+1)(s+2)+ K (18)
The characteristic equation is
st +35° + 357+ 25" + K = 0. (19)
The Routh array is
st 1 3 K
53 3 2 0
52 7/3 K (20)
st 2—-9K/7
0 K
so the s! row yields the condition that, for stability,
14/9 > K > 0. (21)

Special Case: Zero First-Column Element.

If the first term in a row is zero, but the remaining terms are not, the zero is replaced by
a small, positive value of ¢ and the calculation continues as described above. Here’s an
example:

428 +5+2=0 (22)

has Routh array

(23)

O »wW »w »
S =N W



ECE 680 Modern Automatic Control — Routh’s Stability Criterion  June 13, 2007 5

where the last element of the first column is equal 2 = (€2 — 0)/e. In counting changes of
sign, the row beginning with € is not counted.

If the elements above and below the € in the first column have the same sign, a pair
of imaginary roots is indicated. Here, for example, (22) has two roots at s = %j.

On the other hand, if the elements above and below the e have opposite signs, this
counts as a sign change. For example,

=35 +2=(s-1)(s+2) =0 (24)
has Routh array
53 1 -3
2 0=e 2
st —3—-2/¢ (25)
s’ 2

with two sign changes in the first column.

Special Case: Zero Row. If all the coefficients in a row are zero, a pair of roots of
equal magnitude and opposite sign is indicated. These could be two real roots with equal
magnitudes and opposite signs or two conjugate imaginary roots. The zero row is replaced
by taking the coefficients of dP(s)/ds, where P(s), called the auxiliary polynomial, is
obtained from the values in the row above the zero row. The pair of roots can be found
by solving dP(s)/ds = 0.

Note that the auxiliary polynomial always has even degree. It can be shown that an
auxiliary polynomial of degree 2n has n pairs of roots of equal magnitude and opposite
sign.

Example: Use of Auxiliary Polynomial

Consider the quintic equation A(s) = 0 where A(s) is

5% 4+ 25 4+ 245% + 485% — 50. (26)
The Routh array starts off as
51 24 =25
st 2 48 —50 «— auxiliary polynomial P(s) (27)
s30 0

The auxiliary polynomial P(s) is
P(s) = 25"+ 485* — 50 (28)

which indicates that A(s) = 0 must have two pairs of roots of equal magnitude and
opposite sign, which are also roots of the auxiliary polynomial equation P(s) = 0. Taking
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the derivative of P(s) with respect to s we obtain

dP(s)
ds

= 85% + 96s. (29)

so the s® row is as shown below and the Routh array is

50 1 24 =25

st 2 48 =50

3 8 96 —— Coefficients of dP(s)/ds

52 24 —50 (30)
st 112.7 0

s% =50

There is a single change of sign in the first column of the resulting array, indicating that
there A(s) = 0 has one root with positive real part. Solving the auxiliary polynomial
equation,

2s* +48s* — 50 = 0 (31)

yields the remaining roots, namely, from
s2=1, s*=-25, (32)

s==+1, s==£j5. (33)

so the original equation can be factored as

(s+1)(s — 1)(s + 55)(s — j5)(s +2) = 0. (34)

Relative stability analysis. Routh’s stability criterion provides the answer to the
question of absolute stability. This, in many practical cases, is not sufficient. We usually
require information about the relative stability of the system. A wuseful approach for ex-
amining relative stability is to shift the s-plane axis and apply Routh’s stability criterion.
Namely, we substitute s = z — o (o = constant) into the characteristic equation of the
system, write the polynomial in terms of z, and apply Routh’s stability criterion to the
new polynomial in z. The number of changes of sign in the first column of the array
developed for the polynomial in z is equal to the number of roots which are located to the
right of the vertical line s = —o. Thus, this test reveals the number of roots which lie to
the right of the vertical line s = —o. 2

2This italicized text and most of the numerical examples are from Section 6-6 of Ogata, Katsuhiko,
Modern Control Engineering, Englewood Cliffs, NJ: Prentice-Hall, 1970, pp. 252-258. The rest of the
text, including the descriptions of the examples is mine.
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Similarly, the program for the fourth-order transfer function approximation with

T =0.1secis

[num,den] = pade(0.1, 4);
printsys(num, den, 's')
num/den =

sh4 — 2008”3 + 18000s72 — 840000s + 16800000
™4 4+ 200573 + 18000s72 + 840000s + 16800000

Notice that the pade approximation depends on the dead time T and the desired order
for the approximating transfer function.

EXAMPLE PROBLEMS AND SOLUTIONS

A-6-1. Sketch the root loci for the system shown in Figure 6-39(a). (The gain K is assumed to be posi-
tive.) Observe that for small or large values of K the system is overdamped and for medium val-
ues of K it is underdamped.

Solution. The procedure for plotting the root loci is as follows:
1. Locate the open-loop poles and zeros on the complex plane. Root loct exist on the negative
real axis between 0 and ~1 and between —2 and 3.
2, The number of open-loop poles and that of finite zeros are the same. This means that there
are no asymptotes in the complex region of the s plane.
Jo g
- 12
K=0.0718
- _]1
.
0 i o
R(s) 5+3 Cls)
o+ K(s +2) > ST — - 1
- —j2
(@) (b)
Figure 6-39

(a) Control system; (b) root-locus plot.
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3. Determine the breakaway and break-in points. The characteristic equation for the system 1s

K(s + 2)(s + 3)
s(s +1)

=0

or

K = s(s + 1)
T (5 +2)(s +3)

The breakaway and break-in points are determined from

dK (2s + 1)(s + 2)(s + 3) — s(s + 1)(2s5 + 5)

ds [(s +2)(s + 3)]2

4(s + 0.634)(s + 2.366)
(s +2)(s +3)]

as follows:
s = —0.634, s = —2.366

Notice that both points are on root loci. Therefore, they are actual breakaway or break-in
points, At point s = —0.634, the value of K is

T (1366)(2.366)

Similarly, at s = —2.366,

P (-2366)(~1360)
T (—0.366)(0.634)

(Because point s = —0.634 lies between two poles, it is a breakaway point, and because point
s = —2.366 lies between twa zeros, it is a break-in point.)

4. Determine a sufficient number of points that satisfy the angle condition. (It can be found
that the root loci involve a circle with center at —1.5 that passes through the breakaway and
break-in points.) The root-locus plot for this system is shown in Figure 6-39(b).

Note that this system is stable for any positive value of K since all the root loci lie in the left-
half s plane.

Small values of K (0 < K < 0.0718) correspond to an overdamped system. Medium valucs
of K (0.0718 < K < 14) correspond to an underdamped system. Finally, large values of
K (14 < K correspond to an overdamped system. With a large value of K, the steady state can
be reached in much shorter time than with a small value of K.

The value of K shouid be adjusted so that svstem performance is optimum according to a
given performance index.

Example Problems and Solutions 385



A-6-2. Sketch the root loci of the control system shown in Figure 6-40(a).

Solution. The open-loop poles are located at s = 0,5 = =3 + j4,and s = —3 — j4. A root locus
branch exists on the real axis between the origin and —occ. There are three asymptotes for the root
loci. The angles of asymptotes are

+180°(2k + 1)

Angles of asymptotes = —3 - 60°, —60°, 180°

Referring to Equation (6-13), the intersection of the asymptotes and the real axis is obtained as

_0+3+3 _

3 =2

5 =

Next we check the breakaway and break-in points. For this system we have

K = —s(s? + 65 + 25)

Now we set
akK
— =352+ 125 +25) =0
ds
which vields
s =-2+ j20817, s=-2— j2.0817
Jo A
k=150 [/°
K=68 \45
AN a
K=34 /3
—j2
k=68 k=3 [N [
IS L VI . VA I SN
7 -6 -5 -4 -3 2\ -1 o1 o
- —j1
- -2
P - K =34 | i3
5(s2 + 65 +25) o
N
K=68 -5
v
N\
6
(@ (b
Figure 640

(a) Control system; (b) root-locus plot.
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A—-6-3.

Notice that at points s = =2 + j2.0817 the angle condition is not satisfied. Hence, they are nei-
ther breakaway nor break-in points. In fact, if we calculate the value of K, we obtain

K = —s(s* + 65 + 25) =34 + j18.04

s=-24/2.0817

(To be an actual breakaway or break-in point, the corresponding value of K must be real and
positive.)
The angle of departure from the complex pole in the upper half s plane is

0.= 180° — 126.87° — 90°
or
6 = —36.87°

The points where root-locus branches cross the imaginary axis may be found by substituting
$ = jw into the characteristic equation and solving the equation for w and K as follows: Noting
that the characteristic equation is

s+ 65°+255s+ K =0
we have
(jw) + 6(jw)’ + 25(jw) + K = (=60’ + K) + jw(25 - «’) = 0
which yields
w = %5, K = 150 or w =0, K=0

Root-locus branches cross the imaginary axis at @ = S and w = —5.The value of gain K at the
crossing points is 150. Also, the root-locus branch on the real axis touches the imaginary axis at
w = 0. Figure 6-40(b) shows a root-locus plot for the system.

It is noted that if the order of the numerator of G(s)H(s) is lower than that of the denomi-
nator by two or more, and if some of the closed-loop poles move on the root locus toward the right
as gain K is increased, then other closed-loop poles must move toward the left as gain K is in-
creased. This fact can be seen clearly in this problem. If the gain K 1s increased from K = 34 to
K = 68, the complex-conjugate closed-loop poles are moved froms = -2 + j3.65t0s = —1 + j4;
the third pole is moved from s = —2 (which corresponds to K = 34) to s = —4 (which corre-
sponds to K = 68). Thus, the movements of two complex-conjugate closed-loop poles to the right
by one unit cause the remaining closed-loop pole (real pole in this case) to move to the left by two
units.

Consider the system shown in Figure 6-41(a). Sketch the root loci for the system. Observe that
for small or large values of K the system is underdamped and for medium values of K it is
overdamped.

Solution. A root locus exists on the real axis between the origin and —oo. The angles of asymp-
totes of the root-locus branches are obtained as

+180°(2k + 1)
Angles of asymptotes = 3T < 60°, —60°, ~180°

The intersection of the asymptotes and the real axis is located on the real axis at

0+2+
s :—ﬁ?—z = —1.3333

Example Problems and Solutions 387



Figure 6-41
(a) Control system;
(b) root-locus plot.

388

K
s(s2+ 45 + 5)

@) - =3

\

)

The breakaway and break-in points are found from dK/ds = 0. Since the characteristic equation is
P +4as7+5s+ K =0

we have y
K=—(s3+ 45>+ 55)
Now we set
dK )
— =—32+8s+35) =
. (3s+ 85 +5)=0
which yields

s = -1, s = —1.6667

Since these points are on root loci, they are actual breakaway or break-in points. (At point s = —1,
the value of K is 2, and at point s = —1.6667, the value of K is 1.852.)
The angle of departure from a complex pole in the upper half s plane is obtained from

6 = 180° ~ 153.43° — 90°
or
6 = —63.43°

The root-locus branch from the complex pole in the upper half s plane breaks into the real axis
ats = —1.6667.

Next we determine the points where root-locus branches cross the imaginary axis. By substi-
tuting s = jw into the characteristic equation, we have

(jw)* + 4(jw)* + 5(jo) + K =0
or
(K - 4w2) + jw(S - wz) =0

from which we obtain
w==+2V5, K=20 o w=0 K=0

Chapter 6 / Root-Locus Analysis



A-6-4.

Root-locus branches cross the imaginary axis atw = V5 and w = —/5. The root-locus branch
on the real axis touches the jw axis at w = 0. A sketch of the root loci for the system is shown in
Figure 6—41(b).

Note that since this system is of third order, there are three closed-loop poles. The nature of
the system response to a given input depends on the locations of the closed-loop poles.

For 0 < K < 1.852, there are a set of complex-conjugate closed-loop poles and a real closed-
loop pole. For 1.852 = K = 2, there are three real closed-loop poles. For example, the closed-
loop poles are located at

s = —1.667, s = —1.667, s = —-0.667, for K = 1.852
s = -1, s = -1, 5= -2, forK =2

Il

For 2 < K, there are a set of complex-conjugate closed-loop poles and a real closed-loop pole.
Thus, small values of K (0 < K < 1.852) correspond to an underdamped system. (Since the real
closed-loop pole dominates, only a small ripple may show up in the transient response.) Medium
values of K (1.852 = K = 2) correspond to an overdamped system. Large values of K (2 < K))
correspond to an underdamped system. With a large value of K, the system responds much faster
than with a smaller value of K.

Sketch the root loci for the system shown in Figure 6-42(a).

Solution. The open-loop poles are located ats = 0,5 = —1,5 = -2 + j3,ands = -2 — j3. Aroot
locus exists on the real axis between points s = 0 and s = —1. The angles of the asymptotes are
found as follows:

+180°(2k + 1)

Angles of asymptotes = — = 45° —45° 135°,—135°

-6

K
s(s+ 1) (52 + 45 +13)

|

(a) . (b)

Figure 642
(a) Control system; (b) root-locus plot.
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The intersection of the asymptotes and the real axis is found from

+1+2+

The breakaway and break-in points are found from dK/ds = 0. Noting that
K =—s(s + 1)(s* + 45 + 13} = —(5* + 557 + 1757 + 135)
we have

d
:f;( =—(4s3 + 1552 + 345 + 13) = 0

from which we get

s = —0.467, s = —1.642 + j2.067, s = —1.642 — j2.067
Point s = —0.467 is on a root locus. Therefore, it is an actual breakaway point. The gain values K
corresponding to points s = —1.642 + j2.067 are complex quantities. Since the gain values are

not real positive, these points are neither breakaway nor break-in points.
The angle of departure from the complex pole in the upper half s plane is

0 = 180° — 123.69° — 108.44° — 90°
or
8 = —142.13°

Next we shall find the points where root loci may cross the jw axis. Since the characteristic
equation is

s+ 53+ 172+ 13s + K =0
by substituting s = jw into it we obtain
(jw)* + 5(jw)® + 17(jw)? + 13(jw) + K =0
or
(K + o* = 170%) + jo(13 - 50?) = 0
from which we obtain
w = 4 1.6125, K = 3744 or w =0, K=0
The root-locus branches that extend to the right-half s plane cross the imaginary axis at
o = +£1.6125. Also, the root-locus branch on the real axis touches the imaginary axis at = 0. Fig-
ure 6-42(b) shows a sketch of the root loci for the system. Notice that each root-locus branch that

extends to the right half s plane crosses its own asymptote.
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A-6-5. Sketch the root loci for the system shown in Figure 6-43(a).

Solution. A root locus exists on the real axis between points s = —1 and s = —3.6. The asymp-
totes can be determined as follows:
+180°(2k + 1)

Angles of asymptotes = TR o7 T 90°, —-90°
The intersection of the asymptotes and the real axis is found from
0+0+36~-1
= - = -1
s 3T 3

Since the characteristic equation is
s+ 3657+ K(s+1)=0

we have

s* + 3.657
s+ 1
The breakaway and break-in points are found from
dK (352 + 725)(s + 1) — (s° + 3.65%)

ds (s + 1)
or
s+ 3352+ 365 =90
Jo
Lo | 5 1 .
-4 -3 -2 -1 0 1 o
— i
Kis+1) -~
5%(s +3.6) o
2
— 3
@ (b)
Figure 6-43

(a) Control system; (b) root-locus plot.
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from which we get
s =0, s = —1.65 + j0.9367, s = ~1.65 — j0.9367

Point s = 0 corresponds to the actual breakaway point. But points s = 1.65 + j0.9367 are neither
breakaway nor break-in points, because the corresponding gain values K become complex
quantities,

To check the points where root-locus branches may cross the imaginary axis, substitute s = jo
into the characteristic equation, yielding.

(jo)? + 3.6(jo)* + Kjo + K =0
or
(K — 3.60°) + jw(K - o) =0

Notice that this equation can be satisfied only if w = 0, K = 0. Because of the presence of a dou-
ble pole at the origin, the root locus is tangent to the jw axis at w = 0. The root-locus branches do
not cross the jw axis. Figure 6-43(b) is a sketch of the root loci for this system.

A~-6-6. Sketch the root loci for the system shown in Figure 6-44(a).

Solution. A root locus exists on the real axis between point s = —0.4 and s = —3.6. The angles of
asymptotes can be found as follows:

+£180°(2k + 1)

Angles of asymptotes = 31 = 90°, -90°
Jw
60°
L | / [ Lo b
-3 \ -2 -1 0 t o
-60°
\ — 1
K(s + 0.4) ~
s¥(s +3.6) -
L2
73
() (b)

Figure 6-44
(a) Control system; (b) root-locus plot.
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The intersection of the asymptotes and the real axis is obtained from

0+ 0+36-04

3-1 16

S:

Next we shall find the breakaway points. Since the characteristic equation is
2+ 365+ Ks+ 04K =0
we have

_ s+ 3687
s+ 04

The breakaway and break-in points are found from

dK (352 + 7.25)(s + 0.4) — (s° + 3.65%)

ds (s + 047
from which we get
2+ 2457 + 1445 =0
or
s(s +12)=0

Thus, the breakaway or break-in points are ats = Oand s = —1.2. Note that s = —1.2is a double
root. When a double root occurs in dK/ds = Q at points = —1.2, de/(dsz) = () at this point. The
value of gain K at points = —12is

> + 3,65
K=-1"-2 =432
s+ 4 y=—12
This means that with K = 432 the characteristic equation has a triple root at point s = —1.2, This

can be easily verified as follows:
57+ 3.65° + 4325 + 1728 = (s + 12*=0

Hence, three root-locus branches meet at point s = —1.2. The angles of departures at point
s = —1.2 of the root locus branches that approach the asymptotes are £180°/3, that is, 60° and
—60°. (See Problem A-6-7.)

Finally, we shall examine if root-locus branches cross the imaginary axis. By substituting s = jw
into the characteristic equation, we have

(jw)? + 3.6(jw)? + K(jw) + 04K

I
)

or
(04K — 3.60°) + ju(K — &) =0

This equation can be satisfied only if w = 0, K = 0. At point @ = 0, the root locus is tangent to
the jw axis because of the presence of a double pole at the origin. There are no points that root-
locus branches cross the imaginary axis.

A sketch of the root loci for this system is shown in Figure 6-44(b).
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A-6-7. Referring to Problem A-6-6, obtain the equations for the root-locus branches for the system
shown in Figure 6-44(a). Show that the root-locus branches cross the real axis at the breakaway
point at angles +60°.

Solution. The equations for the root-locus branches can be obtained from the angle condition

K(s + 04)

= +180°(2k + 1
(s + 3.6 ( )

which can be rewritten as
[s +04 —2/s— [s +3.6==£180°(2k + 1)
By substituting s = o + jw, we obtain

Jo + jw+04-2/0+ jw— [o+ jo+36=x180°(2k + 1)

or

tan"(d :’04) - 2tan‘1(§) - tan‘l( f36) = +180°(2k + 1)
. o .

By rearranging, we have

-1 @ U R R -1 w o
tan (U n 0}4) tan (0) tan (g) + tan (U " 3.6) +180°(2k + 1)

Taking tangents of both sides of this last equation, and noting that

w

o+ 36

-1 ot (=] —
+ =
tan[tan (a' n 346) + 180°(2k 1)]

we obtain

w w w w

+
c+04 o o o+36

1)
g+ 04

w w w
— 1 - —
a

L+ oo+ 36

which can be simplified to

wr — w(ec +04) (o + 36) + wo

(0 +04)0 + & (o +36) - o

or

w(a® + 2407 + 1440 + 160 + 0w?) =0
which can be further simplified to
wlo(o +12)" + (0 + 1.6)w?] =0
For ¢ # —1.6, we may write this last equation as

- -
U+L6}[w+(0'+l.2) U+1.6:|—0

wl:w ~ (o + 12)
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which gives the equations for the root-locus as follows:
w =0

/| —o

w= (o +12) R
T

w=—(cd + 1.2)1IU+ T

The equation w = 0 represents the real axis. The root locus for 0 = K = oo is between points
s = —=0.4 and s = —3.6. (The real axis other than this line segment and the origin s = 0 corre-
sponds to the root locus for —o0o = K < 0.)

The equations

= +(o + 12),) — 6-21
o= e+ 12\ 775 (6-21)
represent the complex branches for 0 = K = oo.These two branches lie between o = —1.6 and

o = 0. [See Figure 6~44(b).] The slopes of the complex root-locus branches at the breakaway
point (o = —1.2) can be found by evaluating dw/do of Equation (6~21) at point o = —1.2.

dw

do

12
=+ a—i\/g

-
g+ 16

o=-12 o=—12

-1

Since tan 3 = 60°, the root-locus branches intersect the real axis with angles +60°.

Consider the system shown in Figure 6-45(a), which has an unstable feedforward transfer func-
tion. Sketch the root-locus plot and locate the closed-loop poles. Show that, although the closed-
loop poles lie on the negative real axis and the system is not oscillatory, the unit-step response curve
will exhibit overshoot.

Solution. The root-locus plot for this system is shown in Figure 6~45(b). The closed-loop poles are
located at s = -2 and s = —5.
The closed-loop transfer function becomes
C(s)  10(s +1)
R(s) s*+ 75+ 10

Jw

Closed-loop poles /2

s(s = 3) g -6 4 2 A 0 2 4 o

Closed-loop zero — 2

Figure 6-45

(a) (®)

‘a) Control system; (b) root-locus plot.
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Figure 646
Unit-step response
curve for the system

shown in Figure
6-45(a).

A-6-9.

396
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The unit-step response of this system is

10(s + 1)
s(s +2)(s +5)

C(s) =

The inverse Laplace transform of C(s) gives
c(t) =1 + 1.666e™ — 2.666¢™, fort =0

The unit-step response curve is shown in Figure 6-46. Although the system is not oscillatory, the
unit-step response curve exhibits overshoot. (This is due to the presence of a zero ats = —1.)

Sketch the root loci of the control system shown in Figure 6-47(a). Determine the range of gain
K for stability.

Solution. Open-loop poles are locatedat s = 1,5 = =2 + jV3,ands = =2 — jV/3. A root locus
exists on the real axis between points s = 1 and s = —oo. The asymptotes of the root-locus
branches are found as follows:

+180°(2k + 1)
Angles of asymptotes = —3 = 60°, —60°, 180°

The intersection of the asymptotes and the real axis is obtained as

14242

-1
3

5 =

The breakaway and break-in points can be located from dK/ds = 0. Since
K==(s=1)(s?+ds+7) =—(s"+3s>+ 35 - 7)
we have

%z—(332+6s+3)20

ds
which yields
(s + 1) =0
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4 -3

K
(s~1)(s2+4s5+7)

(@) {b)

Figure 647
(a) Control system; (b) root-locus plot.

Thus the equation dK/ds = 0 has a double root at s = —1. {(This means that the characteristic
equation hasa triple root at s = —1.) The breakaway point is located at s = —1. Three root-locus
branches meet at this breakaway point. The angles of departure of the branches at the breakaway
point are £180°/3, that is, 60° and —60°.

We shall next determine the points where root-locus branches may cross the imaginary axis.
Noting that the characteristic equation is

(s =D +4s+7)+ K=0

o)

o~
-
=t

s+ 357+ 3 -7+ K =0

we substitute s = jw into 1t and obtain
(jw) + 3(jw)* + 3(jw) =7+ K =0
By rewriting this last equation, we have
(K -7 - 3w2) + jw(3 - wz) =0
This equation is satisfied when

w=+V3, K=7+3=16 o =0 K=7
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The root-locus branches cross the imaginary axis at w = +V/3 (where K = 16) and w = 0 (where
K = 7).Since the value of gain K at the origin is 7, the range of gain value K for stability is

7 <K <16

Figure 6-47(b) shows a sketch of the root loci for the system. Notice that all branches consist of
parts of straight lines.

The fact that the root-locus branches consist of straight lines can be verified as follows: Since
the angle condition is

K
G- (s + 24 j\V3)(s + 2 —jv3) ~ T80k + 1)

we have

—/s=1=/[s+2+jV3— [s+2—jV3=+180°(2k + 1)

By substituting s = ¢ + jw into this last equation,

c-1l+jo+ [c+2+jo+j\V3+ /o+2+ jo—jV3=+180°02k + 1
/ /

or

Jo+2+jw+ V3 + Jo+2+ jflw—V3)=—/oc -1+ jw+ 180°2k + 1)

which can be rewritten as

Al<w+\/§) _1<w—\@)_ _1<
tan —-(—T—— +tan | —— ] = —tan

+ 2 o+ 2

2 1) + 180°(2k + 1)

Taking tangents of both sides of this last equation, we obtain

w+ V3 w-\V3

+
o+ 2 o+ 2 w

NE e

o+ 2 ot2
or
2w{o + 2) w

0,'2+40'+4—w2+3_ og—1

which can be simplified to
20(o +2)(0 — 1) = —0(o? + 4o + 7 = o?)
or
w(30? + 60 +3 — ) =0

Further simplification of this last equation yields

w(o-+1+—~w1m~)((7+1-

1 )=0
\/§w \/3(0

which defines three lines:

1
m =0, 0'+1+—1‘~w=0, o+l -—w=0

V3 V3
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Thus the root-locus branches consist of three lines. Note that the root loci for K > 0 consist of
portions of the straight lines as shown in Figure 6-47(b). (Note that each straight line starts from
an open-loop pole and extends to infinity in the direction of 180°,60°, or —60° measured from the
real axis.) The remaining portion of each straight line corresponds to K < 0.

A-6-10. Consider the system shown in Figure 6-48(a). Sketch the root loci.

Solution. The open-loop zeros of the system are located at s = *j. The open-loop poles are lo-
cated at s = O and s = —2. This system involves two poles and two zeros. Hence, there is a possi-
bility that a circular root-locus branch exists. In fact, such a circular root locus exists in this case,
as shown in the following. The angle condition is

K(s +j)(s = J)
s(s + 2)

= +180°(2k + 1)

or

s+ j+ [s—j— [s— [s+2==+180°(2k + 1)
By substituting s = ¢ + jw into this last equation, we obtain

jo+jo+j+ [o+jo—j=[c+tjeo+ [c+2+ jot 18002k + 1)

+1 -1
() e (2 () (55) <
o o

Taking tangents of both sides of this equation and noting that

w ©
tan| tan™" ol =
an[an (0‘+2)i180} o+ 2

or

Jw
J2
J
1 % L | .
-3 -2 -1 0 1 o
K% + 1) -
s(s+2) it
—j2
(a) (b)

Figure 648
(a) Control system; (b) root-locus piot.
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A-6-11.

Figure 649
Control system.

400

we obtain

w+1+w—1 w w
s oy o o +t2
v w+1lw-1 w W
1__# -
Yo o oo+ 2

or

which is equivalent to

These two equations are equations for the root loci. The first equation corresponds to the root locus
on the real axis. (The segment between s = 0 and s = —2 corresponds to the root locus for
0 = K < oo.The remaining parts of the real axis correspond to the root locus for K < 0.) The
second equation is an equation for a circle. Thus, there exists a circular root locus with center at
o =}, w = 0 and the radius equal to V5/2. The root loci are sketched in Figure 6-48(b). [That
part of the circular locus to the left of the imaginary zeros corresponds to K > 0. The portion of
the circular locus not shown in Figure 6-48(b) corresponds to K < 0.]

Consider the control system shown in Figure 6-49. Plot the root loci with MATLAB.

Solution. MATLAB Program 6-11 generates a root-locus plot as shown in Figure 6-50. The root
loci must be symmetric about the real axis. However, Figure 6-50 shows otherwise.

MATLAB suppties its own set of gain values that are used to calculate a root-locus plot. It does
so by an internal adaptive step-size routine. However, in certain systems, very small changes in the
gain cause drastic changes in root locations within a certain range of gains. Thus, MATLAB takes too
big a jump in its gain values when calculating the roots, and root locations change by a relatively large
amount. When plotting, MATLAB connects these points and causes a strange-looking graph at the
location of sensitive gains. Such erroneous root-locus plots typically occur when the loci approach a
double pole (or triple or higher pole), since the locus is very sensitive to small gain changes.

MATLAB Program 6-11

Yo =mmmmeme Root-locus plot ----------

num=1[0 0 1 0.4];
den=1{1 3.6 0 0];

rlocus(num,den);

v=1[-51 -3 3]; axis(v)

grid

title('Root-Locus Plot of G(s) = K(s + 0.4)/[s"2(s + 3.6)]")

- @ | K +04) _
o T s(s+3.6)
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Figure 6-50
Root-locus plot.

Root-Locus Plot of G(s) = K(s+0.4)/[s2(s+3.6)]

3
2k
1+
;ﬁ
p 0
E
-1+
-2+
-3 i i i
-5 -4 -3 -2 1\

Real Axis

In the problem considered here, the critical region of gain K is between 4.2 and 4.4. Thus we
need to set the step size small enough in this region. We may divide the region for K as follows:

Kl =1[0:0.2:4.2];
K2 = [4.2:0.002:4 4];
K3 = [4.4:0.2:10};
K4 = [10:5:200];
K=[K1 K2 K3 K4j;
Entering MATLAB Program 6-12 into the computer, we obrain the plot as shown in Figure 6-51.

If we change the plot command plot(r,'o") in MATLAB Program 6-12 to plot(r,-'), we obtain Fig-
ure 6-52. Figures 6-51 and 6-52 respectively, show satisfactory root-locus plots.

MATLAB Program 6-12

Yo ==mmmmmeee Root-locus plot ----------
num=1{0 0 1 0.4];

den=1{1 3.6 0 0];

K1 =1[0:0.2:4.2];

K2 = [4.2:0.002:4.4];

K3 =[4.4:0.2:10};

K4 = [10:5:200];

K=1[K1 K2 K3 K4j;

r = rlocus(num,den,K);

plot(r,'0')
v=1[-5 1 -5 5]; axis(v)
grid

title('Root-Locus Plot of Gis) = K(s + 0.4)/[s*2(s + 3.6)]")
xlabel('Real Axis')
ylabel(‘lmag Axis')

Example Problems and Solutions 401



Figure 6-51
Root-locus plot.

Figure 652
Root-locus plot.

A~6-12,

402

Root-Locus Plot of G(s) = K(s+0.4)/[s%(s+3.6)]
5 T T T T L

Imag Axis
=

-5 -4 -3 -2 -1 0 i
Real Axis

Root-Locus Plot of G(s) = K(5+0.4)/[s%(s+3.6)]

Imag Axis
[e=]

-5 —4 -3 i)
Real Axis

Consider the system whose open-loop transfer function G(s)H(s) is given by

K
GOHG) = (T s+ 2)

Using MATILLAB, plot root loci and their asymptotes.

Solution. We shall plot the root loci and asymptotes on one diagram. Since the open-loop trans-
fer function is given by

K
Gls)H(s) = s(s + 1)(s + 2)
_ K
TS+ 352+ 25
the equation for the asymptotes may be obtained as follows: Noting that
) K ) K K
lim = lim

sooogd + 352 + 25 sood + 324+ 3s+1 (s +1)°
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the equation for the asymptotes may be given by

K
Gu(s)H(s) = ( n 1)3
Hence, for the system we have
num=1[0 0 0 1]
den=1{1 3 2 0]

and for the asymptotes,
numa=[0 0 0 1]
dena=1[1 3 3 1]
In using the following root-locus and plot commands

r = rlocus{num,den)
a = rlocus{numa,dena)
plot(fr al)

the number of rows of r and that of a must be the same. To ensure this, we include the gain con-
stant K in the commands. For example,

K1 = 0:0.1:0.3;

K2 = 0.3:0.005:0.5:
K3 = 0.5:0.5:10;
K4 =10:5:100;

K=[K1 K2 K3 K4}

r = rlocus(num,den,K)

a = rlocustnuma,dena,K)
y=1r a

plotly, '-)

MATLAB Program 6~-13

Yo ~==mmmemn Root-Locus Plots ----------
num=1[00 0 1J;
den = [1

K1 =0:0.1:0.3;

K2 =0.3:0.005:0.5;

K3 =0.50.5:10

K4 = 10:5:100;

K={Kl K2 K3 K4};

r = rlocus(num,den K):

a = rlocus(numa,dena,K);

y=I[r al;

plotly,'-")

v=[-4 4 -4 4]; axis(v)

grid

title('Root-Locus Plot of Gls) = K/[s(s + 1)(s + 2)] and Asymptotes')
xlabel('Real Axis')

ylabel('Imag Axis')

% ***** Manually draw open-loop poles in the hard copy *****
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Figure 6-53
Root-locus plot.

404

Imag Axis
o

Root-Locus Plot of G(s) = K/[(s(s+1)(5+2)] and Asymptotes

Including gain K in rlocus command ensures that the r matrix and a matrix have the same number of
rows. MATLAB Program 6-13 will generate a plot of root loci and their asymptotes. See Figure 6-53.

Drawing two or more plots in one diagram can also be accomplished by using the hold com-
mand. MATLAB Program 6-14 uses the hold command. The resulting root-locus plot is shown

in Figure 6-54.

Real Axis

MATLAB Program 6-14

B S — Root-Locus Plots
num=1[0 0 0 1];

den=1[1 3 2 0];
numa=[0 0 0 1];
dena=1[1 3 3 1];

KT = 0:0.1:0.3;

K2 = 0.3:0.005:0.5;

K3 =0.5:0.5:10;

K4 = 10:5:100;

K=[K1 K2 K3 K4},

r = rlocus{ihum,den,K};
a = rlocus{inuma,dena,K);
plot(r,'0')

hold

Current plot held
plot(a,'-')

v=I[-4 4 -4 4]; axis(v)
grid

xlabel('Real Axis')
ylabel('lmag Axis")

title('Root-Locus Plot of G{s) = K/[s(s+1)(s+2)] and Asymptotes')
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Figure 6-54
Root-locus plot.

A—-6-13.

Root-Locus Plot of G(s) = K/[s(s+1)(s+2)] and Aysmptotes
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Real Axis

Consider a unity-feedback system with the following teedforward transter function G(s):
K(s + 2)?

G(s) =

Plot root loci for the system with MATLAB.

(52 + 4)(5 + 5)

Solution. A MATLAB program to plot the root loci is given as MATLAB Program 6-15. The

resulting root-tocus plot is shown in Figure 6-55.

Notice that this is a special case where no root locus exists on the real axis. This means that
for any value of K > 0 the closed-loop poles of the system are two sets of complex-conjugate
poles. (No real closed-loop poles exist.) For example, with K = 25, the characteristic equation

for the system becomes

st 4+ 105 + 545% + 1405 + 200
= (s* + 45 + 10)(s* + 65 + 20)

= (s + 2+ j2.4495)(s + 2 — j2.4495)(s + 3 + j3.3166)(s + 3 — j3.3166)

MATLAB Program 6-15

%o =mmmmmmmmmen Root-Locus Plot -=-mmnmneme-
P Ve T e W | A AL,
im = [u U 1 4 4j,

den=1[1 10 29 40 100];

r = rlocus(num,den);

plot(r,'0')

hold

current plot held

plot(r,'-")

v =[-8 4 -6 6]; axislv); axis{'square')
grid

xlabel('Real Axis')
ylabel('lmag Axis')

title(‘Root-Locus Plot of G(s) = (s + 2)22/[(s"2 + 4)s + 5)2]")
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Root-Locus Plot of G(s) = (s+2)2/[(s2+4)(s+5)?2)

Imag Axis
©

: !
: 8
_2 oo %

4t
Figure 6-55 I T e T 2 4
Root-locus plot. Real Axis

Since no closed-loop poles exist in the right-half s plane, the system is stable for all values of
K > 0.

A-6-14. Consider a unity-feedback control system with the following feedforward transfer function:

s+ 2
Gls) 5 + 952 + 8

Plot a root-locus diagram with MATLAB. Superimpose on the s plane constant { lines and con-
stant w, circles.

Solution. MATLAB Program 6-16 produces the desired plot as shown in Figure 6-56.

MATLAB Program 6-16

num=[0 0 1 2];
den=1[1 9 8 0];
K =0:0.2:200;
rIocus(num den,K)
=[-10 2 -6 6}; axis(v); axis('square')
sgrld
title('"Root-Locus Plot with Constant \zeta Lines and Constant \omega_n Circles')
gtext('\zeta = 0.9')
gtext('0.7")
gtext('0.5')
gtext('0.3")
gtext “\omega_n = 10')

gtext('4'
gtext('2'

(‘0
(\
t('8')
gtext('6')
('4')
('2')
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Figure 6--56
Root-locus plot with
constant ¢ lines and
constant w,, circles.

A-6-15.

A-6-16.

Root-Locus Plot with Constant { Lines and Constant ,, Circles
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Consider a unity-feedback control system with the following feedforward transfer function:

K(s* + 25)s
s+ 404s% + 1600

G(s) =

Plot root loci for the system with MATLAB. Show that the system is stable for all valuesof K > 0.

Solution. MATLAB Program 6-17 gives a plot of root loci as shown in Figure 6-57. Since the root
loci are entirely in the left-half s plane, the system is stable for all K > 0.

MATLAB Program 6-17

num=[0 1 0 25 0];

den=[1 0 404 0 1600];

K= 0:0.4:1000;

rlocustnum,den,K)

v =1[-30 20 -25 25]; axis(v); axis('square')

grid

title('Root-Locus Plot of G(s) = K(s”2 + 25)s/(s™ + 404572 + 1600)")

A simplified form of the open-loop transfer function of an airplane with an autopilot in the lon-
gitudinal mode 1s
K(s + a)

T , >0, b>0
“)“)su—ww+%%“”@ ’

Such a system involving an open-loop pole in the right-half s plane may be conditionally stable.
Sketch the root loci whena = b = 1,{ = 0.5, and w, = 4. Find the range of gain K for stability.
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Root-Locus Plot of G(s) = K(s? + 25)s/(s* + 4045 + 1600)

25 T T T T 1 T T T T

15 : :
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Imag Axis
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Figure 6-57 =30 =25 =20 -15-10 =5 0 5 10 15 20

Root-locus plot. Real Axis

Solution. The open-loop transfer function for the system is
K(s + 1)
s(s = 1)(s* + 45 + 16)

G(s)H(s) =

To sketch the root loci, we follow this procedure:

1. Locate the open-loop poles and zero in the complex plane. Root loci exist on the real axis
between 1 and 0 and between —1 and —oo.

2. Determine the asymptotes of the root loci. There are three asymptotes whose angles can be
determined as

180°(2k + 1)

-1 = 60°,—60°, 180

Angles of asymptotes =

Referring to Equation (6-13), the abscissa of the intersection of the asymptotes and the real
axis is
(0O-1+2+2V3+2-,2Vv3) -1 2

s = — = — —

4 -1 3
3. Determine the breakaway and break-in points. Since the characteristic equation is
K{s +1
1+ ( ) =0

s(s = 1)(s* + 4s + 16)
we obtain
s(s = 1)(s* + 45 + 16)

K=-
s+ 1

By differentiating K with respect to s, we get

dK 35t + 1057 + 21s5° + 245 — 16

ds (s +1)?
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The numerator can be factored as follows:

3s* + 105° + 215 + 245 ~ 16

= 3(s + 076 + 2.16)(s + 0.76 — j2.16)(s + 2.26)(s ~ 0.45)

Points s = 0.45 and s = —2.26 are on root loci on the real axis. Hence, these points are actu-
al breakaway and break-in points, respectively. Points s = —0.76 + j2.16 do not satisty the
angle condition. Hence, they are neither breakaway nor break-in points.

4. Using Routh’s stability criterion, determine the value of K at which the root loci cross the
imaginary axis. Since the characteristic equation is

s+ 32+ 1282+ (K- 16)s + K =0

the Routh array becomes

s i 12 K

3 3 K—-16 0
52 - K

s? 2 K 0

3

| —K%+ 59K — 832

s 0
52 - K

sY K

The values of K that make the s' term in the first column equal zero are K = 35.7 and
K =233

The crossing points on the imaginary axis can be found by solving the auxiliary equation
obtained from the s* row, that is, by solving the following equation for s:

52 -K

3 S2H+HK=0

The results are

o
1l

+/2.56, for K = 35.7

5 = %j1.56, for K = 23.3
The crossing points on the imaginary axis are thus s = £/2.56 and s = £;1.56.

5. Find the angles of departure of the root loci from the complex poles. For the open-loop pole
ats = —2 + j2V/3, the angle of departure 6 is

# = 180° — 120° - 130.5° — 90" + 106°
or
g = —54.5°
(The angle of departure from the open-loop pole at s = ~2 — j2V3 i3 54.5°)

6. Choose a test point in the broad neighborhood of the jw axis and the origin, and apply the
angle condition. If the test point does not satisty the angle condition, select another test point
until it does. Continue the same process and locate a sufficient number of points that satisfy
the angle condition.
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( K=233

K=0

Sy

Figure 6-58
Root-locus plot.

Figure 6-58 shows the root loci for this system. From step 4, the system is stable for
23.3 < K < 35.7. Otherwise, it is unstable. Thus, the system is conditionally stable.

A-6-17. Consider the system shown in Figure 6-59, where the dead time T is 1 sec. Suppose that we ap-

proximate the dead time by the second-order pade approximation. The expression for this ap-
proximation can be obtained with MATLARB as follows:

[num,den] = pade(1, 2);
printsys(num, den)
num/den =

sh2 —6s + 12

SN2 + 6s + 12

Hence

2~ 65 + 12
=TT 2 (6-22)
s+ 6s + 12

Using this approximation, determine the critical value of K (where K > 0) for stability.

Solution. Since the characteristic equation for the system is
s+1+Ke’=0
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Figure 6-59
A control svstem
with dead time.

A-6-18.

Ris) KT Cis)

s+1

by substituting Equation (6-22) into this characteristic equation, we obtain

s?~6s + 12

s+ 1+ K- =
s°+ 6s + 12

or
S+ T+K)F+(18-6K)s+12(1+K)=0

Applying the Routh stability criterion, we get the Routh table as follows:

53 1 18 — 6K

s 7+ K 12(1 + K)

. —6K? — 36K + 114

s 0
7+ K

s 12(1 + K)

Hence, for stability we require
—6K? — 36K + 114 > 0
which can be written as
(K + 82915)(K — 2.2915) <0

or

K < 22915
Since K must be positive, the range of X for stability is

0 < K <22915

Notice that according to the present analysis, the upper limit of K for stability is 2.2915. This
value is greater than the exact upper limit of K. (Earlier, we obtained the exact upper limit of K
to be 2, as shown in Figure 6-38.) This is because we approximated ¢ * by the second-order pade
approximation. A higher-order pade approximation will improve the accuracy. However, the com-
putations involved increase considerably.

Consider the system shown in Figure 6-60. The plant involves the dead time of T sec. Design a suit-
able controller G, (s) for the system.

Solution. We shall present the Smith predictor approach to design a controller. The first step to
design the controller G .{s) is to design a suitable controller G (s) when the system has no dead
time. Otto J. M. Smith designed an innovative controller scheme, now called the “Smith predictor,”
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Figure 6-60
Control system with
plant with dead time.

Figure 6-61

(a) Control system
with Smith predictor;
(b) equivalent block
diagram for Smith
predictor controlled
system shown in (a).
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Gs) 1 Gs)e s >

Controller Plant

to control the plant with dead time. The Smith predictor consists of G.(s), dead time e™™*, and the
plant transfer function G(s). It has the form

~

G(s)
+ (1 = eT)G(5)G(s)

G.s) =
() =1
Figure 6-61(a) shows the Smith predictor as a minor loop in the block diagram. The transfer func-

tion between U(s) and E(s) is

Us) _ Gi(s)
E(s) 141 - e™)G(s)G(s)

Smith Predictor G .(s)

y
+
A J
D
a

! G(s)e T -

(a)
R R C
e G, > G(s) | T8 -
(®)
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Then the closed-loop transfer function C(s)/R(s) can be given by

Cls) _ Gols)Gs)e™
R(s) 1+ (1 - e™)6s)G(s) + Guls)Gls)e™
ADEOI.

T+ G (5)G(s)

Hence, the block diagram of Figure 6-61(a) can be modified to that of Figure 6-61(b). The closed-
loop response of the system with dead time e™"* is the same as the response of the system with-
out dead time ¢ 7%, except that the response is delayed by T sec.
_ Typical step-response curves of the system without dead time controlled by the controller
G (s) and of the system with dead time controlled by the Smith predictor type controller are
shown in Figure 6-62.

It is noted that implementing the Smith predictor in digital form is not difficult, because dead
time can be handled easily in digital control. However, implementing the Smith predictor in an
analog form creates some difficulty.

Step Response

1 T r -

| Plant with
no dead time

o
o

e
oo
T

 Plant with dead time controlled by |
Smith predictor type controller
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PROBLEMS
B—6-1. Plot the root loci for the closed-loop control system  B—-6-3. Plot the root loci for the closed-loop control system
with with
K(s+1)
= — = K
G(s 2 H=1 G(s) = His) =1

s(s + 1)(s* + 45 + 5)°
B—6-2. Plot the root loci for the closed-loop control system

with B-6-4. Plot the root loci for the system with
K(s +4) K
G = —— =1 G(s) = , s) =1
& =Gy P9 ) = 5+ 05)(5% + 065 + 10) ()
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B—6-5. Plot the root loci for a system with
K
G(s) = ,
(s) (s* + 25 + 2)(s* + 25 + 5)

Determine the exact points where the root loci cross the jw
axis.

H(s) =1

B-6-6. Show that the root loci for a control system with

K(s* + 65 + 10)
s2+ 25+ 10

are arcs of the circle centered at the origin with radius equal

to V10.

B-6-7. Plot the root loci for a closed-loop control system
with

G(s) = . H(s)=1

K(s +02)
sHs + 3.6)°

B-6-8. Plot the root loci for a closed-loop control system
with

G(s) = H(s) =1

Gis) = Kls +09)
S)—s3+sz+1’

B-6-9. Plot the root loci for a closed-loop control system
with

H(s)=1

K(s +9)
s(s* + 4s + 11)°
Locate the closed-loop poles on the root loci such that the

dominant closed-loop poles have a damping ratio equal to
0.5. Determine the corresponding value of gain K.

G(s) = H{sy=1

B-6-10. Plot the root loci for the system shown in Figure
6-63. Determine the range of gain K for stability.

R(s) &)

s+ 1 2

s+5 s2(s+2)

Figure 6-63
Control system.

B-6-11. Consider a unity-feedback control system with the
following feedforward transfer function:

K
G(s) =————""—=
(s) s(s? + 45 + 8)
Plot the root loci for the system. If the value of gain K is set
equal to 2, where are the closed-loop poles located?
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B-6-12. Consider the system whose open-loop transfer
function G(s)H (s) is given by

K(s +1)
(s + 25 + 2)(s* + 25 + 5)

G(s)H(s) =

Plot a root-locus diagram with MATLAB.

B-6-13. Consider the system whose open-loop transfer
function is given by
K(s — 0.6667)

G V) =
(DH(S) = G 330015 © 7.032552

Show that the equation for the asymptotes is given by

K
T &3+ 4.0068s2 + 535155 + 2.3825

Go(s)H,(5)

Using MATLAB, plot the root loci and asymptotes for
the system.

B-6-14. Consider the unity-feedback system whose feed-
forward transfer function is

K

=G

The constant-gain locus for the system for a given value of
K is defined by the following equation:

K

s(s+1) =1

Show that the constant-gain loci for 0 = K = oo may be
given by

[o(c +1) + wZ]Z + ! = K?
Sketch the constant-gain loci for K = 1,2, 5,10, and 20 on
the s plane.

B—6-15. Consider the system shown in Figure 6-64. Plot the
root loci with MATLAB. Locate the closed-loop poles when
the gain KX is set equal to 2.

Kis+ 1)
S5+ 25+ 6)

| /

A

s+1

Figure 664
Control system.



B-6-16. Plot root-locus diagrams for the nonminimum- B-6-17. Consider the closed-loop system with transport lag
phase systems shown in Figures 6-65(a) and (b), respectively.  shown in Figure 6-66. Determine the stability range for

gain K.

K(s-1) N '
NG > R(s) X - 2 » C(s)‘
1 100s+1 € "
Gi(s)
(a)
K(1 —5) .
‘ — Figure 6-66
s+2)(s+4) Control system.
Gas)
(&)

Figure 665
(a) and (b) Nonminimum-phase systems.
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