Vapor pressure

The vapor pressure $\left(\mathrm{P}^{\circ}\right)$ is the pressure of the vapor of a compound in equilibrium with its pure condensed phase (solid or liquid). Vapour pressures depend strongly on the temperature and vary widely with different compounds due to differences in molecule - molecule interactions. The normal boiling point of a liquid is defined as the temperature at which the vapor pressure of the liquid is 1 atmosphere $\left(\mathrm{P}^{\circ}=1 \mathrm{~atm}\right)$.

The Clausius Clapeyron Equation

The vaporization curves of most liquids have similar shape. The vapour pressure steadily increase as the temperature increases. A good approach is to find a mathematical model for the pressure increase as a function of temperature. Experiments showed that the pressure P , enthalpy of vaporization, $\Delta \mathrm{H}_{\text {vap }}$, and temperature T are related.
where $\mathrm{R}\left(=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ and \mathbf{A} are the gas constant and unknown constant. This is known as the Clausius- Clapeyron equation. If P_{1} and P_{2} are the pressures at two temperatures T_{1} and T_{2}, the equation has the form:

$$
\ln \left(\frac{P_{1}}{P_{2}}\right)=\frac{-\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

Conversely, if we know $\Delta H_{\text {vap }}$ and the vapor pressure P_{1} at any temperature T_{1}, we can use Equation above to calculate the vapor pressure P_{2} at any other temperature T 2 . Also, The Clausius-Clapeyron equation allows us to estimate the vapor pressure at another temperature, if the vapor pressure is known at some temperature, and if the enthalpy of vaporization is known.

Example : The vapor pressure of water is 1.0 atm at 373 K , and the enthalpy of vaporization is $40.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Estimate the vapor pressure at temperature 363 and 383 K respectively.

Solution

Using the Clausius-Clapeyron equation,

$$
\ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)=\frac{\Delta \mathrm{H}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)
$$

we have:
$\mathrm{P}_{363}=1.0 \exp (-(40700 / 8.3145)(1 / 363-1 / 373)=0.697 \mathrm{~atm}$
$\mathrm{P}_{383}=1.0 \exp (-(40700 / 8.3145)(1 / 383-1 / 373)=1.409 \mathrm{~atm}$
Note that the increase in vapor pressure from 363 K to 373 K is 0.303 atm , but the increase from 373 to 383 K is 0.409 atm . The increase in vapor pressure is not a linear process.

Liquid-Vapor Equilibrium(VLE):

In thermodynamics and chemical engineering, the vapor liquid equilibrium VLE describes the distribution of a chemical species between the vapor phase and a liquid phase. The concentration of a vapor in contact with its liquid, especially at equilibrium, is often expressed in terms of vapor pressure, which will be a partial pressure (a part of the total gas pressure) if any other gas(es) are present with the vapor.

For each component in a binary mixture, one could make a vapor- liquid equilibrium diagram. Such a diagram would graph liquid mole fraction on a horizontal axis and vapor mole fraction on a vertical axis. In such VLE diagrams, liquid mole fractions for components 1 and 2 can be represented as x_{1} and x_{2} respectively, and vapor mole fractions of the corresponding components are commonly represented as y_{1} and y_{2}, Similarly for binary mixtures in these VLE diagrams:

$$
\mathrm{x}_{1}+\mathrm{x}_{2}=1 \text { and } \mathrm{y}_{1}+\mathrm{y}_{2}=1
$$

Such VLE diagrams are square with a diagonal line running from the $\left(\mathrm{x}_{1}=0, \mathrm{y}_{1}\right.$ $=0)$ corner to the $\left(\mathrm{x}_{1}=1, \mathrm{y}_{1}=1\right)$

Raoult's law

In separation science, one often exploits the preference of a substance for one phase over another to separate a mixture. This is the principle behind distillation. We have seen that under ideal condition, the vapor pressure of a volatile liquid obeys Raoult's law. Say we have a liquid mixture containing two components 1 and 2 . Let the mole fraction of 1 in the liquid be x_{1} and the mole fraction of 2 be $x_{2} \cdot x_{1}+x_{2}=1$ necessarily. If at some temperature T, the vapor pressure of the pure component 1 is P_{1} and that of the pure component 2 is P_{2}, then the partial pressures of the two substances in the vapor phase are described by Raoult's law if the solution is ideal:

$$
\mathbf{P}_{1}=\mathbf{x}_{1} \mathbf{P}_{1} * \quad \mathbf{P}_{2}=\mathbf{x}_{2} \mathbf{P}_{2}^{*}
$$

Vapour Pressure Diagram for ideal Solution

The total pressure of the two vapors is
$\mathbf{P}=\mathbf{P}_{1}+\mathbf{P}_{2}=\mathbf{x}_{1} \mathbf{P}^{*}{ }_{1}+\mathbf{x}_{2} \mathbf{P} \boldsymbol{*}_{2}=\mathbf{P}_{2}-\mathbf{x}_{1}\left(\mathbf{P}_{2}-\mathbf{P}^{\boldsymbol{*}_{1}}\right)$
This is plotted curve in Fig. and clearly it is just a linear function of x_{1}. To produce this total pressure, the mole fraction of component 1 in the liquid must be x_{1}. But what is the mole fraction of component 1 in the vapor? To find out what it is, we simply divide the vapor pressure of 1 by the total pressure and get:

$$
\begin{equation*}
\frac{x_{1} P_{1}^{*}}{P_{2}^{*}-x_{1}\left(P_{2}^{*}-P_{1}^{*}\right)}=y_{1} \tag{1-3}
\end{equation*}
$$

To distinguish this from the mole fraction of component 1 in the liquid phase, we denote the mole fraction of component 1 in the vapor phase y_{1}. This is certainly not equal to x_{1} (except if coincidentally $\mathrm{P}_{1}=\mathrm{P}_{2}$). Therefore, when a liquid evaporates, the composition of its vapor is necessarily deferent from the composition of the liquid. This is easy to rationalize in terms of Raoult's law: the more volatile component should become enriched in the vapor phase. Using Eq (1-3) we can solve for x_{1} in terms of y_{1} and re-express the total pressure in Eq.(1-2) as a function of y_{1} :

$$
P=\frac{P_{1}^{*} P_{2}^{*}}{P_{1}^{*}+\left(P_{2}^{*}-P_{1}^{*}\right) y_{1}}
$$

Example: Calculate the vapor pressure of a mixture containing 252 g of n pentane $(\mathrm{Mw}=72)$ and 1400 g of n -heptane $(\mathrm{Mw}=100)$ at $20^{\circ} \mathrm{C}$. The vapor pressure of npentane and n-heptane are 420 mm Hg and 36 mm Hg respectively.

Solution

According to Raoult's law, the vapor pressure exercised by a component of a mixture can be calculated as follows $\mathbf{P}=\mathbf{P}^{\mathbf{0}} \mathbf{x}$
where
P is the vapor pressure of the component in the mixture.
P^{o} is the vapor pressure of the pure component.
x is the molar fraction of the component in the mixture.
Calculation of molar fractions (x)
moles n-pentane $=252 / 72=3.5$
moles n-heptane $=1400 / 100=14$
Totals $=3.5+14=17.5$ moles
$\mathrm{x}_{\text {n-pentane }}=3.5 / 17.5=0.2$
$\mathrm{x}_{\text {n-eptane }}=14 / 17.5=0.8$
Thus:
$P_{\text {n-pentane }}=0.2 \times 420=84 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{P}_{\text {n-eptane }}=0.8 \times 36=28.8 \mathrm{~mm} \mathrm{Hg}$
and the vapor pressure of mixture is
$P_{\text {mixture }}=84+28.8=112.8 \mathrm{~mm}$

Example: Calculate the boiling point (at 1 atm) of a solution containing 116 g of acetone $(\mathrm{Mw}=58)$ and 72 g of water $(\mathrm{Mw}=18)$ by using the following table:

Temperature ${ }^{\circ} \mathrm{C}$	Vapor pressure (atm) Acetone	Vapor pressure (atm) 60
70	1.14	0.198
80	1.58	0.312
90	2.12	0.456
	2.81	0.694

Solution

A liquid starts to boil when its vapor pressure matches the atmospheric pressure (1 atm inthis case). Thus, according to Raoult's law

$$
\mathrm{P}=\mathrm{x}_{\text {acetone }} \mathrm{P}_{\text {acetone }}^{\mathrm{o}}+\mathrm{x}_{\text {water }} \mathrm{P}_{\text {water }}^{\mathrm{o}}=1 \mathrm{~atm}
$$

From the given data we can calculate the molar fractions
Moles acetone $=116 / 58=2$
moles water $=72 / 18=4$
total moles $=6$
$\mathrm{x}_{\text {acetone }}=2 / 4=1 / 3$
$\mathrm{x}_{\text {water }}=4 / 6=2 / 3$
Thus
$\mathrm{P}=2 / 3 \mathrm{P}_{\text {actone }}^{0}+1 / 3 \mathrm{P}_{\text {water }}^{0}=1 \mathrm{~atm}$
By trials, using the table, we can find the values of vapor pressure which satisfies the above equation. The best result is obtained by using the values at $80^{\circ} \mathrm{C}$:
$\mathrm{P}=2 / 30.456+1 / 32.12=1.01 \mathrm{~atm}$ then the boiling point is about $80^{\circ} \mathrm{C}$.

